Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mechanisms of Drug Action
  • Published:

The substituted benzamides and their clinical potential on dysthymia and on the negative symptoms of schizophrenia

Abstract

In this paper the historical and scientific background that led to the use of substituted benzamides in two apparently unrelated clinical conditions namely dysthymic disorder and schizophrenia will be reviewed, in order to understand if a common mechanism of action may support this dual therapeutic indication. The dopaminergic antidepressant action of substituted benzamides such as sulpiride, has been proposed, since the late 1970s, by several authors and extensively explored in preclinical experiments by our group. In Italy the first marketing authorization obtained for the new substituted benzamide amisulpride, was with the sole indication of dysthymia and therefore a solid clinical experience exists in the use of substituted benzamides in mild forms of depression, with more than 1 000 000 patients being treated in the last 7 years. The proposed mechanism of action of substituted benzamides implies a selective modulation of the dopaminergic system in the mesocorticolimbic area, important for cognitive processing of internal and external cues, related to survival. The selective antagonism of dopamine D2–D3 receptors has been evoked to explain, in small to moderate doses (ie 50–100 mg day−1), the antidepressant effect and, in moderate to medium doses (100–400 mg day−1), the reported efficacy on negative symptoms of schizophrenia. Thus, substituted benzamides could represent the first class of atypical antipsychotics successfully employed for both depressive states and schizophrenia. Interestingly, recent evidence in the literature suggests that depressive episodes belonging to the bipolar spectrum are among ‘alternative indications’ of other atypical antipsychotics such as olanzapine and risperidone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shen WW . A history of antipsychotic drug development Compr Psychiatry 1999 40: 407–414

    CAS  PubMed  Google Scholar 

  2. Kinon BJ, Lieberman JA . Mechanisms of action of atypical antipsychotic drugs: a critical analysis Psychopharmacol (Berl) 1996 124: 2–34

    CAS  Google Scholar 

  3. Petty RG . Prolactin and antipsychotic medications: mechanism of action Schizophr Res 1999 35 Suppl: S67–S73

    CAS  PubMed  Google Scholar 

  4. Wetterling T . Weight gain from atypical neuroleptics—an underreported adverse effect? Fortschr Neurol Psychiatr 2000 68: 546–556

    CAS  PubMed  Google Scholar 

  5. Allison DB, Mentore JL, Heo M, Chandler LP, Cappelleri JC, Infante MC et al. Antipsychotic-induced weight gain: a comprehensive research synthesis Am J Psychiatry 1999 156: 1686–1696

    CAS  PubMed  Google Scholar 

  6. Geddes J, Freemantle N, Harrison P, Bebbington P . Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis BMJ 2000 321: 1371–1376

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hogberg T . The development of dopamine D2-receptor selective antagonists Drug Des Discov 1993 9: 333–350

    CAS  PubMed  Google Scholar 

  8. Siris SG . Depression in schizophrenia: perspective in the era of ‘atypical’ antipsychotic agents Am J Psychiatry 2000 157: 1379–1389

    CAS  PubMed  Google Scholar 

  9. Gessa GL, Serra G (eds). Dopamine and Mental Depression. Pergamon Press: Oxford Adv in the Biosciences vol 77 1990

    Google Scholar 

  10. Muller RB . Therapy of various forms of senile depressions with sulpirid (Dogmatil) Z Allgemeinmed 1975 51: 1546–1548

    CAS  PubMed  Google Scholar 

  11. Niskanen P, Tamminen T, Viukari M . Sulpiride vs amitriptyline in the treatment of depression Curr Ther Res Clin Exp 1975 17: 281–284

    CAS  PubMed  Google Scholar 

  12. Pelc I . Sulpiride and psychic decompensation Encephale 1976 2: 349–361

    CAS  PubMed  Google Scholar 

  13. Serra G, Argiolas A, Klimek V, Fadda F, Gessa GL . Chronic treatment with antidepressants prevents the inhibitory effect of small doses of apomorphine on dopamine synthesis and locomotor activity Life Sci 1979 25: 415–424

    CAS  PubMed  Google Scholar 

  14. Mereu G, Casu M, Gessa GL . (-)-Sulpiride activates the firing rate and tyrosine hydroxylase activity of dopaminergic neurons in unanesthetized rats Brain Res 1983 264: 105–110

    CAS  PubMed  Google Scholar 

  15. Serra G, Forgione A, D'Aquila PS, Collu M, Fratta W, Gessa GL . Possible mechanism of antidepressant effect of L-sulpiride Clin Neuropharmacol 1990 13 Suppl 1: S76–S83

    CAS  PubMed  Google Scholar 

  16. Paizzis G . Italian Medical Dept. Sanofi–Synthélabo. Data on file

  17. Tsukamoto T, Asakura M, Tsuneizumi T, Satoh Y, Shinozuka T, Hasegawa K . Therapeutic effects and side effects in patients with major depression treated with sulpiride once a day Prog Neuro-psychopharmacol Biol Psychiatr 1994 18: 615–618

    CAS  Google Scholar 

  18. Smeraldi E . Amisulpride versus fluoxetine in patients with dysthymia or major depression in partial remission: a double-blind, comparative study J Affect Disord 1998 48: 47–56

    CAS  PubMed  Google Scholar 

  19. Benkert O, Holsboer F . Effect of sulpiride on endovenous depression Acta Psychiatr Scand 1984 69: 42S–48S

    Google Scholar 

  20. Elizur A, Davison S . The evaluation of the anti-autistic activity of sulpiride Curr Ther Res 1975 18: 578–584

    CAS  PubMed  Google Scholar 

  21. Boyer P . Efficacy of low doses of atypical neuroleptics (benzamides) in defect states Ann Med Psychol (Paris) 1986 144: 593–599

    CAS  Google Scholar 

  22. Berner P, Kufferle B, Friedmann A, Grunberger J, Saletu B . Treatment of negative symptoms in schizophrenia with neuroleptics Encephale 1989 15: 457–463

    CAS  PubMed  Google Scholar 

  23. Danion JM, Rein W, Fleurot O . Improvement of schizophrenic patients with primary negative symptoms treated with amisulpride. Amisulpride Study Group Am J Psychiatry 1999 156: 610–616

    CAS  PubMed  Google Scholar 

  24. Lavilli C, Margarit J . The effect of sulpiride on the central nervous system Path Biol 1968 16: 11–14

    Google Scholar 

  25. Ghaemi SN, Cherry EL, Katzow JA, Goodwin FK . Does olanzapine have antidepressant properties? A retrospective preliminary study Bipolar Disord 2000 2: 196–199

    CAS  PubMed  Google Scholar 

  26. Robertson MM, Trimble MR . Neuroleptics as antidepressants Neuropharmacology 1981 20: 1335–1336

    CAS  PubMed  Google Scholar 

  27. Nelson JC . The use of antipsychotic drugs in the treatment of depression. In: Zohar J, Belmaker RH (eds) Treating Resistant Depression PMA Corp: New York 1987 131–146

    Google Scholar 

  28. Carlsson A . Thirty years of dopamine research Adv Neurol 1993 60: 1–10

    CAS  PubMed  Google Scholar 

  29. Fibiger HC, Phillips AG . Role of catecholamine transmitters in reward systems: implications for the neurobiology of affect In Oreland E. (ed) Brain Reward Systems and Abuse New York Press: New York 1987 pp 61–74

    Google Scholar 

  30. Wise RA . The brain and reward. In: Liebman J, Cooper SJ. (eds). The Neuropharmacological Basis of Reward Oxford University Press: Oxford 1989

    Google Scholar 

  31. Blackburn JR, Pfaus JG, Phillips AG . Dopamine functions in appetitive and defensive behaviours Prog Neurobiol 1992 39: 247–279

    CAS  PubMed  Google Scholar 

  32. Ahn S, Phillips AG . Dopaminergic correlates of sensory-specific satiety in the medial prefrontal cortex and nucleus accumbens of the rat J Neurosci 1999 19: RC29

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Berridge KC, Robinson TE . What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 1998 28: 309–369

    CAS  PubMed  Google Scholar 

  34. Bassareo V, Di Chiara G . Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum J Neurosci 1997 17: 851–861

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Di Chiara G, Loddo P, Tanda G . Reciprocal changes in prefrontal and limbic dopamine responsiveness to aversive and rewarding stimuli after chronic mild stress: implications for the psychobiology of depression Biol Psychiatry 1999 46: 1624–1633

    CAS  PubMed  Google Scholar 

  36. D'Aquila PS, Collu M, Gessa GL, Serra G . The role of dopamine in the mechanism of action of antidepressant drugs Eur J Pharmacol 2000 405: 365–373

    CAS  PubMed  Google Scholar 

  37. Vetulani J, Nalepa I . Antidepressants: past, present and future Eur J Pharmacol 2000 405: 351–363

    CAS  PubMed  Google Scholar 

  38. Carlsson A, Lindquist M . Effect of chlorpromazine and haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain Acta Pharmacol Toxicol 1963 20: 140–144

    CAS  Google Scholar 

  39. Snyder SH . Catecholamines in the brain as mediators of amphetamine psychosis Arch Gen Psychiatry 1972 27: 169–179

    CAS  PubMed  Google Scholar 

  40. Hietala J, Syvälahti E, Vuorio K, Ngren K, Lehikoinen P, Ruotsalalainen U et al. Striatal D2-dopamine receptor characteristics inneuroleptic-naive schizophrenic patients studied with positronemission tomography Arch Gen Psychiatry 1994 51: 116–123

    CAS  PubMed  Google Scholar 

  41. Dao-Costellana MH, Paillère-Martinot ML, Hantraye P, Attar-Lévy D, Rémy P, Crouzel C et al. Presynaptic dopaminergic function in the striatum of schizophrenic patients Schizophr Res 1997 23: 167–174

    Google Scholar 

  42. Lindström LH, Gefvert O, Hagberg G, Hagström P, Lundberg T, Bergström P et al. Increased synthesis of dopamine in prefrontal cortex and striatum in drug-naive schizophrenic patients studied by use of C11-labelled l-DOPA and positron emission tomography (PET) Proc Annu Meet ACNP, 36th 1997 p 290 (abstract)

  43. Laruelle M . 2000 Imaging dopamine dysregulation in schizophrenia: implication for treatment Presented at Workshop Schizophr: Pathol Bases and Mech Antipsychotic Action, Chicago, quoted in Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML Interactions between monoamines, glutamate, and gaba in schizophrenia: new evidence Annu Rev Pharmacol Toxicol 2001 41: 237–260

    Google Scholar 

  44. Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D'Souza CD, Erdos J et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects Proc Natl Acad Sci USA 1996 93: 9235–9240

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method Proc Natl Acad Sci USA 1997 94: 2569–2574

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Laruelle M et al. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort Am J Psychiatry 1998 155: 761–767

    CAS  PubMed  Google Scholar 

  47. Grace AA . Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia Neuroscience 1991 41: 1–24

    CAS  PubMed  Google Scholar 

  48. Davis KL, Kahn RS, Ko G, Davidson M . Dopamine in schizophrenia: a review and reconceptualization Am J Psychiatry 1991 148: 1474–1486

    CAS  PubMed  Google Scholar 

  49. Goldstein M, Deutch AY . Dopaminergic mechanisms in the pathogenesis of schizophrenia FASEB J 1992 6: 2413–2421

    CAS  PubMed  Google Scholar 

  50. Carlsson A . The current status of the dopamine hypothesis of schizophrenia Neuropsychopharmacology 1988 1: 179–186

    CAS  PubMed  Google Scholar 

  51. Carlsson A . The dopamine theory revisited. In: Hirsch SR, Weinberger DR (eds) Schizophrenia Blackwell Science: Oxford 1995 379–400

    Google Scholar 

  52. Deutch AY . The regulation of subcortical dopamine systems by the prefrontal cortex: interactions of central dopamine systems and the pathogenesis of schizophrenia J Neural Transm Suppl 1992 36: 61–89

    CAS  PubMed  Google Scholar 

  53. Fink-Jensen A . Novel pharmacological approaches to the treatment of schizophrenia Dan Med Bull 2000 47: 151–167

    CAS  PubMed  Google Scholar 

  54. Saunders RC, Kolachana BS, Weinberger DR . Local pharmacological manipulation of extracellular dopamine levels in the dorsolateral prefrontal cortex and caudate nucleus in the rhesus monkey: an in vivo microdialysis study Exp Brain Res 1994 98: 44–52

    CAS  PubMed  Google Scholar 

  55. Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G . Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects Arch Gen Psychiatry 1992 49: 538–544

    CAS  PubMed  Google Scholar 

  56. Kane J, Honigfeld G, Singer J, Meltzer H . Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine Arch Gen Psychiatry 1988 45: 789–796

    CAS  PubMed  Google Scholar 

  57. Moghaddam B, Bunney BS . Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study J Neurochem 1990 54: 1755–1760

    CAS  PubMed  Google Scholar 

  58. Youngren KD, Moghaddam B, Bunney BS, Roth RH . Preferential activation of dopamine overflow in prefrontal cortex produced by chronic clozapine treatment Neurosci Lett 1994 165: 41–44

    CAS  PubMed  Google Scholar 

  59. Ashby CR, Wang RY . Pharmacological actions of the atypical antipsychotic drug clozapine: a review Synapse 1996 24: 349–394

    CAS  PubMed  Google Scholar 

  60. Peselow ED, Stanley M . Clinical trials of benzamides in psychiatry Adv Biochem Psychopharmacol 1982 35: 163–194

    CAS  PubMed  Google Scholar 

  61. Pelissolo A, Krebs MO, Olie JP . Treatment of negative symptoms in schizophrenia by amisulpride. Review of the literature Encephale 1996 22: 215–219

    CAS  PubMed  Google Scholar 

  62. Caley CF, Weber SS . Sulpiride: an antipsychotic with selective dopaminergic antagonist properties Ann Pharmacother 1995 29: 152–160

    CAS  PubMed  Google Scholar 

  63. Lecrubier Y, Boyer P, Turjanski S, Rein W . Amisulpride Study Group. Amisulpride versus imipramine and placebo in dysthymia and major depression J Affect Dis 1997 43: 95–103

    CAS  PubMed  Google Scholar 

  64. Boyer P, Lecrubier Y, Stalla-Bourdillon A, Fleurot O . Amisulpride versus amineptine and placebo for the treatment of dysthymia Neuropsychobiology 1999 39: 25–32

    CAS  PubMed  Google Scholar 

  65. Tamminga CA, Gerlach J . New neuroleptics and experimental antipsychotics in schizophrenia. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress Raven Press: New York 1987 1129–1140

    Google Scholar 

  66. Tagliamonte A, De Montis G, Olianas M, Vargiu L, Corsini GU, Gessa GL . Selective increase of brain dopamine synthesis by sulpiride J Neurochem 1975 24: 707–710

    CAS  PubMed  Google Scholar 

  67. Scatton B, Bischoff S, Dedek J, Korf J . Regional effects of neuroleptics on dopamine metabolism and dopamine-sensitive adenylate cyclase activity Eur J Pharmacol 1977 44: 287–292

    CAS  PubMed  Google Scholar 

  68. Harnryd C, Bjerkenstedt L, Gullberg B, Oxenstierna G, Sedvall G, Wiesel FA . Time course for effects of sulpiride and chlorpromazine on monoamine metabolite and prolactin levels in cerebrospinal fluid from schizophrenic patients Acta Psychiatr Scand 1984 69: S75–S92

    Google Scholar 

  69. Maubrey MC, Jacquot C, Gonidec J, Guez M, Idee JM, Margarit J . Profil pharmacologique et biochimique de l'amisulpride Ann Psychiatr 1988 3: 284–297

    Google Scholar 

  70. Chivers JK, Gommeren W, Leysen JE, Jenner P, Marsden CD . Comparison of the in-vitro receptor selectivity of substituted benzamide drugs for brain neurotransmitter receptors J Pharm Pharmacol 1988 40: 415–421

    CAS  PubMed  Google Scholar 

  71. Ogren SO . Selective dopamine D2 receptor antagonists with an atypical neuroleptic profile Clin Neuropharmacol 1992 15 (Suppl 1): 462A–463A

    Google Scholar 

  72. Chouinard G . Early phase II clinical trial of remoxipride in treatment of schizophrenia with measurements of prolactin and neuroleptic activity J Clin Psychopharmacol 1987 7: 159–164

    CAS  PubMed  Google Scholar 

  73. Lindstrom L, Besev G, Stening G, Widerlov E . An open study of remoxipride, a benzamide derivative, in schizophrenia Psychopharmacology 1985 86: 241–243

    CAS  PubMed  Google Scholar 

  74. Lund Laursen A, Gerlach J . Antipsychotic effect of remoxipride, a new substituted benzamide with selective antidopaminergic activity Acta Psychiatr Scand 1986 73: 17–21

    CAS  PubMed  Google Scholar 

  75. McCreadie RG, Morrison D, Eccleston D, Gall RG, Loudon J . An open multicentre study of the treatment of florid schizophrenia with remoxipride Acta Psychiatr Scand 1985 72: 139–143

    CAS  PubMed  Google Scholar 

  76. Willner P . Animal models of depressions: validity and application. In: Gessa GL (ed). Neurobiology Treatment Raven Press: New York 1995; pp 19–41

    Google Scholar 

  77. Papp M, Wieronska J . Antidepressant-like activity of amisulpride in two animal models of depression J Psychopharmacol 2000 14: 46–52

    CAS  PubMed  Google Scholar 

  78. Drago F, Arezzi A, Virzi A . Effects of acute or chronic administration of substituted benzamides in experimental models of depression in rats Eur Neuropsychopharmacol 2000 10: 437–442

    CAS  PubMed  Google Scholar 

  79. Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML . Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence Annu Rev Pharmacol Toxicol 2001 41: 237–260

    CAS  PubMed  Google Scholar 

  80. Lahti AC, Weiler MA, Corey PK, Lahti RA, Carlsson A, Tamminga CA . Antipsychotic properties of the partial dopamine agonist (-)-3-(3-hydroxyphenyl)-N-n-propylpiperidine (preclamol) in schizophrenia Biol Psychiatry 1998 43: 2–11

    CAS  PubMed  Google Scholar 

  81. Svensson K, Hjorth S, Clark D, Carlsson A, Wikström H, Andersson B et al. (+)-UH 232 and (+)-UH 242: novel stereoselective DA receptor antagonists with preferential action on autoreceptors J Neural Transm 1986 65: 1–27

    CAS  PubMed  Google Scholar 

  82. Sonesson C, Lin CH, Hansson L, Waters N, Svensson K, Carlsson A et al. Substituted (S)-phenylpiperidines and rigid congeners as preferential dopamine autoreceptor antagonists: synthesis and structure-activity relationships J Med Chem 1994 37: 2735–2753

    CAS  PubMed  Google Scholar 

  83. Jimerson DC . Role of dopamine mechanisms in affective disorders. In: Meltzer HY (ed). Psychopharmacology: The Third Generation of Progress Raven Press: New York 1987 pp 505–511

    Google Scholar 

  84. Knable MB, Weinberger DR . Dopamine, the prefrontal cortex and schizophrenia J Psychopharmacol 1997 11: 123–131

    CAS  PubMed  Google Scholar 

  85. Cha JH, Kosinski CM, Kerner JA, Alsdorf SA, Mangiarini L, Davies SW et al. Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene Proc Natl Acad Sci USA 1998 95: 6480–6485

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wise RA . Neurobiology of addiction Curr Opin Neurobiol 1996 6: 243–251

    CAS  PubMed  Google Scholar 

  87. Gothham AM, Brown RG, Marsden CD . ‘Frontal’ cognitive function in patients with Parkinson's disease ‘on’ and ‘off’ levodopa Brain 1988 111: 299–321

    Google Scholar 

  88. Volkow ND, Gur RC, Wang GJ, Fowler JS, Moberg PJ, Ding YS et al. Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals Am J Psychiatry 1998 155: 344–349

    CAS  PubMed  Google Scholar 

  89. Brozoski T, Brown RM, Rosvold HE, Goldman PS . Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey Science 1979 205: 929–932

    CAS  PubMed  Google Scholar 

  90. Müller U, von Cramon DY, Pollman S . D1- versus D2-receptor modulation of visuospatial working memory in humans J Neurosci 1998 18: 2720–2728

    PubMed  PubMed Central  Google Scholar 

  91. Goldman-Rakic PS, Muly EC III, Williams GV . D1 receptors in prefrontal cells and circuits Brain Res Rev 2000 31: 295–301

    CAS  PubMed  Google Scholar 

  92. Devoto P, Flore G, Pani L, Gessa GL . Evidence for co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex Mol Psychiatry 2001 6: 657–664

    CAS  PubMed  Google Scholar 

  93. Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS . An astroglia-linked dopamine D2-receptor action in prefrontal cortex Proc Natl Acad Sci USA 2001 98: 1964–1969

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Selemon LD, Lidow MS, Goldman-Rakic PS . Increased volume and glial density in primate prefrontal cortex associated with chronic antipsychotic drug exposure Biol Psychiatry 1999 46: 161–172

    CAS  PubMed  Google Scholar 

  95. Vallone D, Ricetti R, Borrelli E . Structure and function of dopamine receptors Neurosci Biobehav Rev 2000 24: 125–132

    CAS  PubMed  Google Scholar 

  96. Wadworth AN, Heel RC . Remoxipride. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in schizophrenia Drugs 1990 40: 863–879

    CAS  PubMed  Google Scholar 

  97. Scatton B, Claustre Y, Cudennec A, Oblin A, Perrault G, Sanger DJ et al. Amisulpride: from animal pharmacology to therapeutic action Int Clin Psychopharmacol 1997 12 Suppl 2: S29–S36

    CAS  PubMed  Google Scholar 

  98. Seeman P, Tallerico T . Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors Mol Psychiatry 1998 3: 123–134

    CAS  PubMed  Google Scholar 

  99. Goldman-Rakic PS, Lidow MS, Gallager DW . Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefronal cortex J Neurosci 1990 10: 2125–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P . Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using 3H raclopride, 3H spiperone and 3H SCH23390 Neuroscience 1991 40: 657–671

    CAS  PubMed  Google Scholar 

  101. Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET Nature 1997 385: 634–636

    CAS  PubMed  Google Scholar 

  102. de Kuyser J, de Backer JP, Vauquelin G, Ebinger G . The effect of aging on the D1 dopamine receptors in human frontal cortex Brain Res 1990 528: 308–310

    Google Scholar 

  103. Suhara T, Fukuda H, Inoue O, Itoh T, Suzuki K, Yamasaki T et al. Age-related changes in human D1 dopamine receptors measured by positron emission tomography Psychopharmacology 1991 103: 41–45

    CAS  PubMed  Google Scholar 

  104. Salthouse TA . Working-memory mediation of adult age differences in integrative reasoning Mem Cogn 1992 20: 413–423

    CAS  Google Scholar 

  105. Castner SA, Goldman-Rakic PS . Profound cognitive impairments in non-human primates exposed to amphetamine Soc Neurosci Abstr 1999 25: 627.6

    Google Scholar 

  106. Lidow MS, Williams GV, Goldman-Rakic PS . The cerebral cortex: a case for a common site of action of antipsychotics Trends Pharm Sci 1998 19: 136–140

    CAS  PubMed  Google Scholar 

  107. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition American Psychiatric Association: Washington DC 1994 pp 276–277

  108. Serretti A, Jori MC, Casadei G, Ravizza L, Smeraldi E, Akiskal H . Delineating psychopathologic clusters within dysthymia: a study of 512 out-patients without major depression J Affect Disord 1999 56: 17–25

    CAS  PubMed  Google Scholar 

  109. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. Fourth Edition American Psychiatric Association: Washington DC 1994 pp 345–346

  110. Leonard BE . Evidence for a biochemical lesion in depression J Clin Psychiatry 2000 61 Suppl 6: 12–17

    CAS  PubMed  Google Scholar 

  111. Lambert G, Johansson M, Agren H, Friberg P . Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders Arch Gen Psychiatry 2000 57: 787–793

    CAS  PubMed  Google Scholar 

  112. Malmberg Å, Jerning E, Mohell N . Critical reevaluation of spiperone and benzamide binding to dopamine D2 receptors: evidence for identical binding sites Eur J Pharmacol 1996 303: 123–128

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Pani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pani, L., Gessa, G. The substituted benzamides and their clinical potential on dysthymia and on the negative symptoms of schizophrenia. Mol Psychiatry 7, 247–253 (2002). https://doi.org/10.1038/sj.mp.4001040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001040

Keywords

This article is cited by

Search

Quick links