Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The role of CALM–AF10 gene fusion in acute leukemia

Abstract

Chromosomal translocations are important genetic perturbations frequently associated with hematologic malignancies; characterization of these events has been a rich source of insights into the mechanisms that lead to malignant transformation. The t(10;11)(p13;q14–21) results in a recently identified rare but recurring chromosomal translocation seen in patients with ALL as well as AML, and results in the production of a CALM–AF10 fusion gene. Although the details by which the CALM–AF10 fusion protein exerts its leukemogenic effect remain unclear, emerging data suggests that the CALM–AF10 fusion impairs differentiation of hematopoietic cells, at least in part via an upregulation of HOXA cluster genes. This review discusses the normal structure and function of CALM and AF10, describes the spectrum of clinical findings seen in patients with CALM–AF10 fusions, summarizes recently published CALM–AF10 mouse models and highlights the role of HOXA cluster gene activation in CALM–AF10 leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Rabbitts TH . Translocations, master genes, and differences between the origins of acute and chronic leukemias. Cell 1991; 67: 641–644.

    Article  CAS  PubMed  Google Scholar 

  2. Rabbitts TH . Chromosomal translocations in human cancer. Nature 1994; 372: 143–149.

    Article  CAS  PubMed  Google Scholar 

  3. Cline MJ . The molecular basis of leukemia. N Engl J Med 1994; 330: 328–336.

    Article  CAS  PubMed  Google Scholar 

  4. Thandla S, Aplan PD . Molecular biology of acute lymphocytic leukemia. Semin Oncol 1997; 24: 45–56.

    CAS  PubMed  Google Scholar 

  5. Rowley JD . The role of chromosome translocations in leukemogenesis. Semin Hematol 1999; 36 (4 Suppl 7): 59–72.

    CAS  PubMed  Google Scholar 

  6. Rowley JD . Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer 2001; 1: 245–250.

    Article  CAS  PubMed  Google Scholar 

  7. Rubnitz JE, Behm FG, Downing JR . 11q23 rearrangements in acute leukemia. Leukemia 1996; 10: 74–82.

    CAS  PubMed  Google Scholar 

  8. Sundstrom C, Nilsson K . Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer 1976; 17: 565–577.

    Article  CAS  PubMed  Google Scholar 

  9. Harris P, Ralph P . Human leukemic models of myelomonocytic development: a review of the HL-60 and U937 cell lines. J Leukoc Biol 1985; 37: 407–422.

    Article  CAS  PubMed  Google Scholar 

  10. Kobayashi H, Thirman MJ, Rowley JD . U937 cell line has a t(10;11)(p13–14;q14–21) rather than a deletion of 11q. Genes Chromosomes Cancer 1995; 13: 217–218.

    Article  CAS  PubMed  Google Scholar 

  11. Shipley J, Williams S, O’Byrne A, Kearney L, Jones T, Young B et al. Characterization of a t(10;11)(p13–14;q14–21) in the monoblastic cell line U937. Genes Chromosomes Cancer 1995; 13: 138–142.

    Article  CAS  PubMed  Google Scholar 

  12. Dreyling MH, Martinez-Climent JA, Zheng M, Mao J, Rowley JD, Bohlander SK . The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc Natl Acad Sci USA 1996; 93: 4804–4809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meyerholz A, Hinrichsen L, Groos S, Esk PC, Brandes G, Ungewickell EJ . Effect of clathrin assembly lymphoid myeloid leukemia protein depletion on clathrin coat formation. Traffic 2005; 6: 1225–1234.

    Article  CAS  PubMed  Google Scholar 

  14. Tebar F, Bohlander SK, Sorkin A . Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Mol Biol Cell 1999; 10: 2687–2702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Klebig ML, Wall MD, Potter MD, Rowe EL, Carpenter DA, Rinchik EM . Mutations in the clathrin-assembly gene Picalm are responsible for the hematopoietic and iron metabolism abnormalities in fit1 mice. Proc Natl Acad Sci USA 2003; 100: 8360–8365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ahle S, Ungewickell E . Purification and properties of a new clathrin assembly protein. EMBO J 1986; 5: 3143–3149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takei K, Mundigl O, Daniell L, De Camilli P . The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J Cell Biol 1996; 133: 1237–1250.

    Article  CAS  PubMed  Google Scholar 

  18. Mukherjee S, Ghosh RN, Maxfield FR . Endocytosis. Physiol Rev 1997; 77: 759–803.

    Article  CAS  PubMed  Google Scholar 

  19. Schmid SL . Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 1997; 66: 511–548.

    Article  CAS  PubMed  Google Scholar 

  20. Robinson MS, Bonifacino JS . Adaptor-related proteins. Curr Opin Cell Biol 2001; 13: 444–453.

    Article  CAS  PubMed  Google Scholar 

  21. Dell’Angelica EC, Klumperman J, Stoorvogel W, Bonifacino JS . Association of the AP-3 adaptor complex with clathrin. Science 1998; 280: 431–434.

    Article  PubMed  Google Scholar 

  22. Wendland B, Emr SD . Pan1p, yeast eps15, functions as a multivalent adaptor that coordinates protein-protein interactions essential for endocytosis. J Cell Biol 1998; 141: 71–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang B, Koh YH, Beckstead RB, Budnik V, Ganetzky B, Bellen HJ . Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 1998; 21: 1465–1475.

    Article  CAS  PubMed  Google Scholar 

  24. Archangelo LF, Glasner J, Krause A, Bohlander SK . The novel CALM interactor CATS influences the subcellular localization of the leukemogenic fusion protein CALM/AF10. Oncogene 2006; 25: 4099–4109.

    Article  CAS  PubMed  Google Scholar 

  25. Wechsler DS, Engstrom LD, Alexander BM, Motto DG, Roulston D . A novel chromosomal inversion at 11q23 in infant acute myeloid leukemia fuses MLL to CALM, a gene that encodes a clathrin assembly protein. Genes Chromosomes Cancer 2003; 36: 26–36.

    Article  CAS  PubMed  Google Scholar 

  26. Chaplin T, Bernard O, Beverloo HB, Saha V, Hagemeijer A, Berger R et al. The t(10;11) translocation in acute myeloid leukemia (M5) consistently fuses the leucine zipper motif of AF10 onto the HRX gene. Blood 1995; 86: 2073–2076.

    CAS  PubMed  Google Scholar 

  27. Chaplin T, Ayton P, Bernard OA, Saha V, Della Valle V, Hillion J et al. A novel class of zinc finger/leucine zipper genes identified from the molecular cloning of the t(10;11) translocation in acute leukemia. Blood 1995; 85: 1435–1441.

    CAS  PubMed  Google Scholar 

  28. Linder B, Jones LK, Chaplin T, Mohd-Sarip A, Heinlein UA, Young BD et al. Expression pattern and cellular distribution of the murine homologue of AF10. Biochim Biophys Acta 1998; 1443: 285–296.

    Article  CAS  PubMed  Google Scholar 

  29. Linder B, Newman R, Jones LK, Debernardi S, Young BD, Freemont P et al. Biochemical analyses of the AF10 protein: the extended LAP/PHD-finger mediates oligomerisation. J Mol Biol 2000; 299: 369–378.

    Article  CAS  PubMed  Google Scholar 

  30. Aasland R, Gibson TJ, Stewart AF . The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 1995; 20: 56–59.

    Article  CAS  PubMed  Google Scholar 

  31. Aravind L, Landsman D . AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res 1998; 26: 4413–4421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Debernardi S, Bassini A, Jones LK, Chaplin T, Linder B, de Bruijn DR et al. The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood 2002; 99: 275–281.

    Article  PubMed  Google Scholar 

  33. Morerio C, Rapella A, Tassano E, Rosanda C, Panarello C . MLL-MLLT10 fusion gene in pediatric acute megakaryoblastic leukemia. Leuk Res 2005; 29: 1223–1226.

    Article  CAS  PubMed  Google Scholar 

  34. Borkhardt A, Haas OA, Strobl W, Repp R, Mann G, Gadner H et al. A novel type of MLL/AF10 fusion transcript in a child with acute megakaryocytic leukemia (AML-M7). Leukemia 1995; 9: 1796–1797.

    CAS  PubMed  Google Scholar 

  35. DiMartino JF, Ayton PM, Chen EH, Naftzger CC, Young BD, Cleary ML . The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. Blood 2002; 99: 3780–3785.

    Article  CAS  PubMed  Google Scholar 

  36. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005; 121: 167–178.

    Article  CAS  PubMed  Google Scholar 

  37. Groupe Francais de Cytogenetique Hematologique (GFCH). t(10;11)(p13–14;q14–21): a new recurrent translocation in T-cell acute lymphoblastic leukemias. Genes Chromosomes Cancer 1991; 3: 411–415.

    Article  Google Scholar 

  38. Asnafi V, Radford-Weiss I, Dastugue N, Bayle C, Leboeuf D, Charrin C et al. CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. Blood 2003; 102: 1000–1006.

    Article  CAS  PubMed  Google Scholar 

  39. Abdelhaleem M, Beimnet K, Kirby-Allen M, Naqvi A, Hitzler J, Shago M . High incidence of CALM-AF10 fusion and the identification of a novel fusion transcript in acute megakaryoblastic leukemia in children without Down's syndrome. Leukemia 2007; 21: 352–353.

    Article  CAS  PubMed  Google Scholar 

  40. Kobayashi H, Hosoda F, Maseki N, Sakurai M, Imashuku S, Ohki M et al. Hematologic malignancies with the t(10;11) (p13;q21) have the same molecular event and a variety of morphologic or immunologic phenotypes. Genes Chromosomes Cancer 1997; 20: 253–259.

    Article  CAS  PubMed  Google Scholar 

  41. Salmon-Nguyen F, Busson M, Daniel M, Leblanc T, Bernard OA, Berger R . CALM-AF10 fusion gene in leukemias: simple and inversion-associated translocation (10;11). Cancer Genet Cytogenet 2000; 122: 137–140.

    Article  CAS  PubMed  Google Scholar 

  42. Abdou SM, Jadayel DM, Min T, Swansbury GJ, Dainton MG, Jafer O et al. Incidence of MLL rearrangement in acute myeloid leukemia, and a CALM-AF10 fusion in M4 type acute myeloblastic leukemia. Leuk Lymphoma 2002; 43: 89–95.

    Article  CAS  PubMed  Google Scholar 

  43. Jones LK, Chaplin T, Shankar A, Neat M, Patel N, Samuel DP et al. Identification and molecular characterisation of a CALM-AF10 fusion in acute megakaryoblastic leukaemia. Leukemia 2001; 15: 910–914.

    Article  CAS  PubMed  Google Scholar 

  44. Narita M, Shimizu K, Hayashi Y, Taki T, Taniwaki M, Hosoda F et al. Consistent detection of CALM-AF10 chimaeric transcripts in haematological malignancies with t(10;11)(p13;q14) and identification of novel transcripts. Br J Haematol 1999; 105: 928–937.

    Article  CAS  PubMed  Google Scholar 

  45. Bohlander SK, Muschinsky V, Schrader K, Siebert R, Schlegelberger B, Harder L et al. Molecular analysis of the CALM/AF10 fusion: identical rearrangements in acute myeloid leukemia, acute lymphoblastic leukemia and malignant lymphoma patients. Leukemia 2000; 14: 93–99.

    Article  CAS  PubMed  Google Scholar 

  46. Deshpande AJ, Cusan M, Rawat VP, Reuter H, Krause A, Pott C et al. Acute myeloid leukemia is propagated by a leukemic stem cell with lymphoid characteristics in a mouse model of CALM/AF10-positive leukemia. Cancer Cell 2006; 10: 363–374.

    Article  CAS  PubMed  Google Scholar 

  47. Kumon K, Kobayashi H, Maseki N, Sakashita A, Sakurai M, Tanizawa A et al. Mixed-lineage leukemia with t(10;11)(p13;q21): an analysis of AF10-CALM and CALM-AF10 fusion mRNAs and clinical features. Genes Chromosomes Cancer 1999; 25: 33–39.

    Article  CAS  PubMed  Google Scholar 

  48. Rabbitts TH . Chromosomal translocation master genes, mouse models and experimental therapeutics. Oncogene 2001; 20: 5763–5777.

    Article  CAS  PubMed  Google Scholar 

  49. Bernardi R, Grisendi S, Pandolfi PP . Modelling haematopoietic malignancies in the mouse and therapeutical implications. Oncogene 2002; 21: 3445–3458.

    Article  CAS  PubMed  Google Scholar 

  50. Forster A, Pannell R, Drynan L, Cano F, Chan N, Codrington R et al. Chromosomal translocation engineering to recapitulate primary events of human cancer. Cold Spring Harb Symp Quant Biol 2005; 70: 275–282.

    Article  CAS  PubMed  Google Scholar 

  51. Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y . Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat Cell Biol 2006; 8: 1017–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Caudell D, Zhang Z, Chung YJ, Aplan PD . Expression of a CALM-AF10 fusion gene leads to Hoxa cluster overexpression and acute leukemia in transgenic mice. Cancer Res 2007; 67: 8022–8031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Balciunaite G, Ceredig R, Massa S, Rolink AG . A B220+ CD117+ CD19− hematopoietic progenitor with potent lymphoid and myeloid developmental potential. Eur J Immunol 2005; 35: 2019–2030.

    Article  CAS  PubMed  Google Scholar 

  54. Pearson JC, Lemons D, McGinnis W . Modulating Hox gene functions during animal body patterning. Nat Rev Genet 2005; 6: 893–904.

    Article  CAS  PubMed  Google Scholar 

  55. Garcia-Fernandez J . The genesis and evolution of homeobox gene clusters. Nat Rev Genet 2005; 6: 881–892.

    Article  CAS  PubMed  Google Scholar 

  56. van Oostveen J, Bijl J, Raaphorst F, Walboomers J, Meijer C . The role of homeobox genes in normal hematopoiesis and hematological malignancies. Leukemia 1999; 13: 1675–1690.

    Article  CAS  PubMed  Google Scholar 

  57. Abramovich C, Humphries RK . Hox regulation of normal and leukemic hematopoietic stem cells. Curr Opin Hematol 2005; 12: 210–216.

    Article  CAS  PubMed  Google Scholar 

  58. Grier DG, Thompson A, Kwasniewska A, McGonigle GJ, Halliday HL, Lappin TR . The pathophysiology of HOX genes and their role in cancer. J Pathol 2005; 205: 154–171.

    Article  CAS  PubMed  Google Scholar 

  59. Lam DH, Aplan PD . NUP98 gene fusions in hematologic malignancies. Leukemia 2001; 15: 1689–1695.

    Article  CAS  PubMed  Google Scholar 

  60. Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106: 274–286.

    Article  CAS  PubMed  Google Scholar 

  61. Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 2005; 19: 358–366.

    Article  CAS  PubMed  Google Scholar 

  62. Hess JL . MLL: a histone methyltransferase disrupted in leukemia. Trends Mol Med 2004; 10: 500–507.

    Article  CAS  PubMed  Google Scholar 

  63. Armstrong SA, Golub TR, Korsmeyer SJ . MLL-rearranged leukemias: insights from gene expression profiling. Semin Hematol 2003; 40: 268–273.

    Article  CAS  PubMed  Google Scholar 

  64. Mullighan CG, Kennedy A, Zhou X, Radtke I, Phillips LA, Shurtleff SA et al. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias. Leukemia 2007; 21: 2000–2009.

    Article  CAS  PubMed  Google Scholar 

  65. Nakamura T, Largaespada DA, Lee MP, Johnson LA, Ohyashiki K, Toyama K et al. Fusion of the nucleoporin gene Nup98 to Hoxa9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 1996; 12: 154–158.

    Article  CAS  PubMed  Google Scholar 

  66. Pineault N, Abramovich C, Ohta H, Humphries RK . Differential and common leukemogenic potentials of multiple NUP98-Hox fusion proteins alone or with Meis1. Mol Cell Biol 2004; 24: 1907–1917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pineault N, Buske C, Feuring-Buske M, Abramovich C, Rosten P, Hogge DE et al. Induction of acute myeloid leukemia in mice by the human leukemia-specific fusion gene NUP98-HOXD13 in concert with Meis1. Blood 2003; 101: 4529–4538.

    Article  CAS  PubMed  Google Scholar 

  68. Kroon E, Thorsteinsdottir U, Mayotte N, Nakamura T, Sauvageau G . NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. EMBO J 2001; 20: 350–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin YW, Slape C, Zhang Z, Aplan PD . NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood 2005; 106: 287–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dik WA, Brahim W, Braun C, Asnafi V, Dastugue N, Bernard OA et al. CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes. Leukemia 2005; 19: 1948–1957.

    Article  CAS  PubMed  Google Scholar 

  71. Gilliland DG, Tallman MS . Focus on acute leukemias. Cancer Cell 2002; 1: 417–420.

    Article  CAS  PubMed  Google Scholar 

  72. Nakamura F, Maki K, Arai Y, Nakamura Y, Mitani K . Monocytic leukemia with CALM/AF10 rearrangement showing mediastinal emphysema. Am J Hematology 2003; 72: 138–142.

    Article  CAS  Google Scholar 

  73. Carlson KM, Vignon C, Bohlander S, Martinez-Climent JA, Le Beau MM, Rowley JD . Identification and molecular characterization of CALM/AF10 fusion products in T cell acute lymphoblastic leukemia and acute myeloid leukemia. Leukemia 2000; 14: 100–104.

    Article  CAS  PubMed  Google Scholar 

  74. La Starza R, Crescenzi B, Krause A, Pierini V, Specchia G, Bardi A et al. Dual-color split signal fluorescence in situ hybridization assays for the detection of CALM/AF10 in t(10;11)(p13;q14-q21)-positive acute leukemia. Haematologica 2006; 91: 1248–1251.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Chris Slape, Dr Helge Hartung, Dr Yang Jo Chung, Dr Yue Cheng, Dr R Mark Simpson and Dr Siba Samal for their many fruitful and insightful discussions regarding this review. This research was supported by the Intramural Research Program of the NIH, NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P D Aplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caudell, D., Aplan, P. The role of CALM–AF10 gene fusion in acute leukemia. Leukemia 22, 678–685 (2008). https://doi.org/10.1038/sj.leu.2405074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2405074

Keywords

This article is cited by

Search

Quick links