Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Highly purified CD38+ and CD38 sub-clones derived from the same chronic lymphocytic leukemia patient have distinct gene expression signatures despite their monoclonal origin

Abstract

CD38 expression is an important prognostic marker in chronic lymphocytic leukemia (CLL) with high levels of CD38 associated with shorter overall survival. In this study, we used gene expression profiling and protein analysis of highly purified cell-sorted CD38+ and CD38 chronic lymphocytic leukemia cells to elucidate a molecular basis for the association between CD38 expression and inferior clinical outcome. Paired CD38+ and CD38 CLL cells derived from the same patient were shown to be monoclonal by VH gene sequencing but despite this, CD38+ CLL cells possessed a distinct gene expression profile when compared with their CD38 sub-clones. Importantly, CD38+ CLL cells relatively over expressed vascular endothelial growth factor (VEGF) and appeared to preferentially utilize an internal autocrine VEGF survival loop. Elevated VEGF expression was associated with increased expression of the anti-apoptotic protein Mcl-1. Inhibition of VEGF receptor signaling also resulted in a reduction in cell viability. In contrast, exogenous VEGF caused a significant increase in CD38 CLL cell viability and a marked induction of Mcl-1; both effects were less obvious in CD38+ CLL cells. Taken together, our data provide a biological rationale for the poor prognosis of CD38+ CLL and indicate that both VEGF and Mcl-1 may prove to be useful therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Shanafelt TD, Geyer SM, Kay NE . Prognosis at diagnosis: integrating molecular biologic insights into clinical practice for patients with CLL. Blood 2004; 103: 1202–1210.

    Article  CAS  Google Scholar 

  2. Rai KR, Han T . Prognostic factors and clinical staging in chronic lymphocytic leukemia. Hematol Oncol Clin North Am 1990; 4: 447–456.

    Article  CAS  Google Scholar 

  3. Vrhovac R, Delmer A, Tang R, Marie JP, Zittoun R, Ajchenbaum-Cymbalista F . Prognostic significance of the cell cycle inhibitor p27Kip1 in chronic B-cell lymphocytic leukemia. Blood 1998; 91: 4694–4700.

    CAS  Google Scholar 

  4. Ibrahim S, Keating M, Do KA, O'Brien S, Huh YO, Jilani I et al. CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia. Blood 2001; 98: 181–186.

    Article  CAS  Google Scholar 

  5. Dohner H, Stilgenbauer S, Dohner K, Bentz M, Lichter P . Chromosome aberrations in B-cell chronic lymphocytic leukemia: reassessment based on molecular cytogenetic analysis. J Mol Med 1999; 77: 266–281.

    Article  CAS  Google Scholar 

  6. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

    CAS  Google Scholar 

  7. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  Google Scholar 

  8. Ghia P, Guida G, Stella S, Gottardi D, Geuna M, Strola G et al. The pattern of CD38 expression defines a distinct subset of chronic lymphocytic leukemia (CLL) patients at risk of disease progression. Blood 2003; 101: 1262–1269.

    Article  CAS  Google Scholar 

  9. Alessio M, Roggero S, Funaro A, De Monte LB, Peruzzi L, Geuna M et al. CD38 molecule: structural and biochemical analysis on human T lymphocytes, thymocytes, and plasma cells. J Immunol 1990; 145: 878–884.

    CAS  Google Scholar 

  10. Deaglio S, Mallone R, Baj G, Donati D, Giraudo G, Corno F et al. Human CD38 and its ligand CD31 define a unique lamina propria T lymphocyte signaling pathway. FASEB J 2001; 15: 580–582.

    Article  CAS  Google Scholar 

  11. Funaro A, De Monte LB, Dianzani U, Forni M, Malavasi F . Human CD38 is associated to distinct molecules which mediate transmembrane signaling in different lineages. Eur J Immunol 1993; 23: 2407–2411.

    Article  CAS  Google Scholar 

  12. Mallone R, Funaro A, Zubiaur M, Baj G, Ausiello CM, Tacchetti C et al. Signaling through CD38 induces NK cell activation. Int Immunol 2001; 13: 397–409.

    Article  CAS  Google Scholar 

  13. Musso T, Deaglio S, Franco L, Calosso L, Badolato R, Garbarino G et al. CD38 expression and functional activities are up-regulated by IFN-gamma on human monocytes and monocytic cell lines. J Leukoc Biol 2001; 69: 605–612.

    CAS  Google Scholar 

  14. Mehta K, Shahid U, Malavasi F . Human CD38, a cell-surface protein with multiple functions. FASEB J 1996; 10: 1408–1417.

    Article  CAS  Google Scholar 

  15. Deaglio S, Capobianco A, Bergui L, Durig J, Morabito F, Duhrsen U et al. CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells. Blood 2003; 102: 2146–2155.

    Article  CAS  Google Scholar 

  16. Zupo S, Massara R, Dono M, Rossi E, Malavasi F, Cosulich ME et al. Apoptosis or plasma cell differentiation of CD38-positive B-chronic lymphocytic leukemia cells induced by cross-linking of surface IgM or IgD. Blood 2000; 95: 1199–1206.

    CAS  Google Scholar 

  17. Zupo S, Isnardi L, Megna M, Massara R, Malavasi F, Dono M et al. CD38 expression distinguishes two groups of B-cell chronic lymphocytic leukemias with different responses to anti-IgM antibodies and propensity to apoptosis. Blood 1996; 88: 1365–1374.

    CAS  Google Scholar 

  18. Pepper C, Brennan P, Alghazal S, Ward R, Pratt G, Starczynski J et al. CD38+ chronic lymphocytic leukaemia cells co-express high levels of ZAP-70 and are functionally distinct from their. Leukemia 2006; 20: 743–744.

    Article  CAS  Google Scholar 

  19. Pittner BT, Shanafelt TD, Kay NE, Jelinek DF . CD38 expression levels in chronic lymphocytic leukemia B cells are associated with activation marker expression and differential responses to interferon stimulation. Leukemia 2005; 19: 2264–2272.

    Article  CAS  Google Scholar 

  20. Binet JL, Auquier A, Dighiero G, Chastang C, Piguet H, Goasguen J et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981; 48: 198–206.

    Article  CAS  Google Scholar 

  21. Matthews C, Catherwood M, Morris TC, Alexander HD . Routine analysis of IgVH mutational status in CLL patients using BIOMED-2 standardized primers and protocols. Leuk Lymphoma 2004; 45: 1899–1904.

    Article  Google Scholar 

  22. Strawn LM, McMahon G, App H, Schreck R, Kuchler WR, Longhi MP et al. Flk-1 as a target for tumor growth inhibition. Cancer Res 1996; 56: 3540–3545.

    CAS  Google Scholar 

  23. Farahani M, Treweeke AT, Toh CH, Till KJ, Harris RJ, Cawley JC et al. Autocrine VEGF mediates the antiapoptotic effect of CD154 on CLL cells. Leukemia 2005; 19: 524–530.

    Article  CAS  Google Scholar 

  24. Lee YK, Shanafelt TD, Bone ND, Strege AK, Jelinek DF, Kay NE . VEGF receptors on chronic lymphocytic leukemia (CLL) B cells interact with STAT 1 and 3: implication for apoptosis resistance. Leukemia 2005; 19: 513–523.

    Article  CAS  Google Scholar 

  25. Lee YK, Bone ND, Strege AK, Shanafelt TD, Jelinek DF, Kay NE . VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood 2004; 104: 788–794.

    Article  CAS  Google Scholar 

  26. McCabe D, Bacon L, O'Regan K, Condron C, O'Donnell JR, Murphy PT . CD38 expression on B-cell chronic lymphocytic leukemic cells is strongly correlated with vascular endothelial growth factor expression. Leukemia 2004; 18: 649–650.

    Article  CAS  Google Scholar 

  27. Bomstein Y, Yuklea M, Radnay J, Shapiro H, Afanasyev F, Yarkoni S et al. The antiapoptotic effects of blood constituents in patients with chronic lymphocytic leukemia. Eur J Haematol 2003; 70: 290–295.

    Article  Google Scholar 

  28. Le Gouill S, Podar K, Amiot M, Hideshima T, Chauhan D, Ishitsuka K et al. VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood 2004; 104: 2886–2892.

    Article  CAS  Google Scholar 

  29. Packham G, Stevenson FK . Bodyguards and assassins: Bcl-2 family proteins and apoptosis control in chronic lymphocytic leukaemia. Immunology 2005; 114: 441–449.

    Article  CAS  Google Scholar 

  30. Chen H, Treweeke AT, West DC, Till KJ, Cawley JC, Zuzel M et al. In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells. Blood 2000; 96: 3181–3187.

    CAS  Google Scholar 

  31. McCabe D, O'Regan K, Murphy PT . Relationship between cell surface expression of CD38 and of vascular endothelial growth factor in B-cell chronic lymphocytic leukemia. Leuk Res 2004; 28: 1239–1240.

    Article  CAS  Google Scholar 

  32. D'Arena G, Musto P, Cascavilla N, Dell'Olio M, Di RN, Perla G et al. CD38 expression correlates with adverse biological features and predicts poor clinical outcome in B-cell chronic lymphocytic leukemia. Leuk Lymphoma 2001; 42: 109–114.

    Article  CAS  Google Scholar 

  33. Del Poeta G, Maurillo L, Venditti A, Buccisano F, Epiceno AM, Capelli G et al. Clinical significance of CD38 expression in chronic lymphocytic leukemia. Blood 2001; 98: 2633–2639.

    Article  CAS  Google Scholar 

  34. Durig J, Naschar M, Schmucker U, Renzing-Kohler K, Holter T, Huttmann A et al. CD38 expression is an important prognostic marker in chronic lymphocytic leukaemia. Leukemia 2002; 16: 30–35.

    Article  CAS  Google Scholar 

  35. Degan M, Zucchetto A, Bomben R, Dal BM, Rupolo M, Nanni P et al. Activation-induced cytidine deaminase and CD38 expression in B-cell chronic lymphocytic leukemia. Clin Lymphoma Myeloma 2005; 6: 251–252.

    Article  Google Scholar 

  36. Zucchetto A, Bomben R, Dal BM, Bulian P, Benedetti D, Nanni P et al. CD49d in B-cell chronic lymphocytic leukemia: correlated expression with CD38 and prognostic relevance. Leukemia 2006; 20: 523–525.

    Article  CAS  Google Scholar 

  37. Gora-Tybor J, Blonski JZ, Robak T . Circulating vascular endothelial growth factor (VEGF) and its soluble receptors in patients with chronic lymphocytic leukemia. Eur Cytokine Netw 2005; 16: 41–46.

    CAS  Google Scholar 

  38. Till KJ, Spiller DG, Harris RJ, Chen H, Zuzel M, Cawley JC . CLL, but not normal, B cells are dependent on autocrine VEGF and alpha4beta1 integrin for chemokine-induced motility on and through endothelium. Blood 2005; 105: 4813–4819.

    Article  CAS  Google Scholar 

  39. Wang L, Coad JE, Fortney JM, Gibson LF . VEGF-induced survival of chronic lymphocytic leukemia is independent of Bcl-2 phosphorylation. Leukemia 2005; 19: 1486–1487.

    Article  CAS  Google Scholar 

  40. Pedersen IM, Kitada S, Leoni LM, Zapata JM, Karras JG, Tsukada N et al. Protection of CLL B cells by a follicular dendritic cell line is dependent on induction of Mcl-1. Blood 2002; 100: 1795–1801.

    Article  CAS  Google Scholar 

  41. Saxena A, Viswanathan S, Moshynska O, Tandon P, Sankaran K, Sheridan DP . Mcl-1 and Bcl-2/Bax ratio are associated with treatment response but not with Rai stage in B-cell chronic lymphocytic leukemia. Am J Hematol 2004; 75: 22–33.

    Article  CAS  Google Scholar 

  42. Thomas A, Pepper C, Hoy T, Bentley P . Bryostatin induces protein kinase C modulation, Mcl-1 up-regulation and phosphorylation of Bcl-2 resulting in cellular differentiation and resistance to drug-induced apoptosis in B-cell chronic lymphocytic leukemia cells. Leuk Lymphoma 2004; 45: 997–1008.

    Article  CAS  Google Scholar 

  43. Bannerji R, Kitada S, Flinn IW, Pearson M, Young D, Reed JC et al. Apoptotic-regulatory and complement-protecting protein expression in chronic lymphocytic leukemia: relationship to in vivo rituximab resistance. J Clin Oncol 2003; 21: 1466–1471.

    Article  CAS  Google Scholar 

  44. Petlickovski A, Laurenti L, Li X, Marietti S, Chiusolo P, Sica S et al. Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells. Blood 2005; 105: 4820–4827.

    Article  CAS  Google Scholar 

  45. Jaksic O, Paro MM, Kardum SI, Kusec R, Pejsa V, Jaksic B . CD38 on B-cell chronic lymphocytic leukemia cells has higher expression in lymph nodes than in peripheral blood or bone marrow. Blood 2004; 103: 1968–1969.

    Article  CAS  Google Scholar 

  46. Yang-Yen HF . Mcl-1: a highly regulated cell death and survival controller. J Biomed Sci 2006; 13: 201–204.

    Article  CAS  Google Scholar 

  47. Huttmann A, Klein-Hitpass L, Thomale J, Deenen R, Carpinteiro A, Nuckel H et al. Gene expression signatures separate B-cell chronic lymphocytic leukaemia prognostic subgroups defined by ZAP-70 and CD38 expression status. Leukemia 2006; 20: 1774–1782.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Leukaemia Research Fund, the Leukaemia Research Appeal for Wales and the Welsh Bone Marrow Transplant Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Pepper.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pepper, C., Ward, R., Lin, T. et al. Highly purified CD38+ and CD38 sub-clones derived from the same chronic lymphocytic leukemia patient have distinct gene expression signatures despite their monoclonal origin. Leukemia 21, 687–696 (2007). https://doi.org/10.1038/sj.leu.2404587

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404587

Keywords

This article is cited by

Search

Quick links