Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Disorders

Overexpression of the heat-shock protein 70 is associated to imatinib resistance in chronic myeloid leukemia

Abstract

Imatinib is an effective therapy for chronic myeloid leukemia (CML), a myeloproliferative disorder characterized by the expression of the recombinant oncoprotein Bcr-Abl. In this investigation, we studied an imatinib-resistant cell line (K562-r) generated from the K562 cell line in which none of the previously described mechanisms of resistance had been detected. A threefold increase in the expression of the heat-shock protein 70 (Hsp70) was detected in these cells. This increase was not associated to heat-shock transcription factor-1 (HSF-1) overexpression or activation. RNA silencing of Hsp70 decreased dramatically its expression (90%), and was accompanied by a 34% reduction in cell viability. Overexpression of Hsp70 in the imatinib-sensitive K562 line induced resistance to imatinib as detected by a large reduction in cell death in the presence of 1 μ M of imatinib. Hsp70 level was also increased in blast cells of CML patients resistant to imatinib, whereas the level remained low in responding patients. Taken together, the results demonstrate that overexpression of Hsp70 can lead to both in vitro and in vivo resistance to imatinib in CML cells. Moreover, the overexpression of Hsp70 detected in imatinib-resistant CML patients supports this mechanism and identifies potentially a marker and a therapeutic target of CML evolution.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Anafi M, Gazit A, Zehavi A, Ben-Neriah Y, Levitzki A . Tyrphostin-induced inhibition of p210bcr-abl tyrosine kinase activity induces K562 to differentiate. Blood 1993; 82: 3524–3529.

    CAS  PubMed  Google Scholar 

  2. Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000; 295: 139–145.

    CAS  PubMed  Google Scholar 

  3. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Druker BJ et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 1996; 56: 100–104.

    CAS  PubMed  Google Scholar 

  4. Goldman JM . Chronic myeloid leukemia – still a few questions. Exp Hematol 2004; 32: 2–10.

    Article  PubMed  Google Scholar 

  5. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  PubMed  Google Scholar 

  6. Deininger MW, Goldman JM, Lydon N, Melo JV . The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 1997; 90: 3691–3698.

    CAS  PubMed  Google Scholar 

  7. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002; 346: 645–652.

    Article  CAS  PubMed  Google Scholar 

  8. Deininger MW, Druker BJ . SRCircumventing imatinib resistance. Cancer Cell 2004; 6: 108–110.

    Article  CAS  PubMed  Google Scholar 

  9. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002; 99: 3530–3539.

    Article  CAS  PubMed  Google Scholar 

  10. Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 2002; 99: 1928–1937.

    Article  CAS  PubMed  Google Scholar 

  11. Deininger MW, Goldman JM, Melo JV . The molecular biology of chronic myeloid leukemia. Blood 2000; 96: 3343–3356.

    CAS  PubMed  Google Scholar 

  12. Daub H, Specht K, Ullrich A . Strategies to overcome resistance to targeted protein kinase inhibitors. Nat Rev Drug Discov 2004; 3: 1001–1010.

    Article  CAS  PubMed  Google Scholar 

  13. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  CAS  PubMed  Google Scholar 

  14. Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC, Lahaye T et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002; 16: 2190–2196.

    Article  CAS  PubMed  Google Scholar 

  15. Gambacorti-Passerini C, Barni R, le Coutre P, Zucchetti M, Cabrita G, Cleris L et al. Role of alpha1 acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571. J Natl Cancer Inst 2000; 92: 1641–1650.

    Article  CAS  PubMed  Google Scholar 

  16. Larghero J, Leguay T, Mourah S, Madelaine-Chambrin I, Taksin A-L, Raffoux E et al. Relationship between elevated levels of the alpha 1 acid glycoprotein in chronic myelogenous leukemia in blast crisis and pharmacological resistance to imatinib (Gleevec(R)) in vitro and in vivo. Biochem Pharmacol 2003; 66: 1907–1913.

    Article  CAS  PubMed  Google Scholar 

  17. Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 2003; 101: 2368–2373.

    Article  CAS  PubMed  Google Scholar 

  18. Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 2000; 96: 1070–1079.

    CAS  PubMed  Google Scholar 

  19. Nollen EAA, Morimoto RI . Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci 2002; 115: 2809–2816.

    CAS  PubMed  Google Scholar 

  20. Pratt WB, Toft DO . Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003; 228: 111–133.

    Article  CAS  Google Scholar 

  21. Guo F, Sigua C, Bali P, George P, Fiskus W, Scuto A et al. Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood 2005; 105: 1246–1255.

    Article  CAS  PubMed  Google Scholar 

  22. Garrido C, Schmitt E, Cande C, Vahsen N, Parcellier A, Kroemer G . HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell Cycle 2003; 2: 579–584.

    Article  CAS  PubMed  Google Scholar 

  23. Beere HM . ‘The stress of dying’: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 2004; 117: 2641–2651.

    Article  CAS  PubMed  Google Scholar 

  24. Sreedhar AS, Csermely P . Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 2004; 101: 227–257.

    Article  CAS  PubMed  Google Scholar 

  25. Luders J, Demand J, Hohfeld J . The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 2000; 275: 4613–4617.

    Article  CAS  PubMed  Google Scholar 

  26. Demand J, Alberti S, Patterson C, Hohfeld J . Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol 2001; 11: 1569–1577.

    Article  CAS  PubMed  Google Scholar 

  27. Hu W, Wu W, Verschraegen CF, Chen L, Mao L, Yeung SC et al. Proteomic identification of heat shock protein 70 as a candidate target for enhancing apoptosis induced by farnesyl transferase inhibitor. Proteomics 2003; 3: 1904–1911.

    Article  CAS  PubMed  Google Scholar 

  28. Ray S, Lu Y, Kaufmann SH, Gustafson WC, Karp JE, Boldogh I et al. Genomic mechanisms of p210BCR-ABL signaling: induction of heat shock protein 70 through the GATA response element confers resistance to paclitaxel-induced apoptosis. J Biol Chem 2004; 279: 35604–35615.

    Article  CAS  PubMed  Google Scholar 

  29. Barthe C, Gharbi MJ, Lagarde V, Chollet C, Cony-Makhoul P, Reiffers J et al. Mutation in the ATP-binding site of BCR-ABL in a patient with chronic myeloid leukaemia with increasing resistance to STI571. Br J Haematol 2002; 119: 109–111.

    Article  CAS  PubMed  Google Scholar 

  30. Joubert-Caron R, Feuillard J, Kohanna S, Poirier F, Le Caer JP, Schuhmacher M et al. A computer-assisted two-dimensional gel electrophoresis approach for studying the variations in protein expression related to an induced functional repression of NFkappaB in lymphoblastoid cell lines. Electrophoresis 1999; 20: 1017–1026.

    Article  CAS  PubMed  Google Scholar 

  31. Smith DL, Evans CA, Pierce A, Gaskell SJ, Whetton AD . Changes in the proteome associated with the action of Bcr-Abl tyrosine kinase are not related to transcriptional regulation. Mol Cell Proteomics 2002; 1: 876–884.

    Article  CAS  PubMed  Google Scholar 

  32. Pasquet JM, Quek L, Pasquet S, Poole A, Matthews JR, Lowell C et al. Evidence of a role for SHP-1 in platelet activation by the collagen receptor glycoprotein VI. J Biol Chem 2000; 275: 28526–28531.

    Article  CAS  PubMed  Google Scholar 

  33. Deininger M, Buchdunger E, Druker BJ . The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005; 105: 2640–2653.

    Article  CAS  PubMed  Google Scholar 

  34. Ottmann OG, Druker BJ, Sawyers CL, Goldman JM, Reiffers J, Silver RT et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 2002; 100: 1965–1971.

    Article  CAS  PubMed  Google Scholar 

  35. Hochhaus A, Kreil S, Corbin A, La Rosee P, Lahaye T, Berger U et al. Roots of clinical resistance to STI-571 cancer therapy. Science 2001; 293: 2163.

    Article  CAS  PubMed  Google Scholar 

  36. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.

    Article  CAS  PubMed  Google Scholar 

  37. Nimmanapalli R, O'Bryan E, Huang M, Bali P, Burnette PK, Loughran T et al. Molecular characterization and sensitivity of STI-571 (Imatinib Mesylate, Gleevec)-resistant, Bcr-Abl-positive, human acute leukemia cells to SRC kinase inhibitor PD180970 and 17-Allylamino-17-demethoxygeldanamycin. Cancer Res 2002; 62: 5761–5769.

    CAS  PubMed  Google Scholar 

  38. Morimoto RI . Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 1998; 12: 3788–3796.

    Article  CAS  PubMed  Google Scholar 

  39. Pirkkala L, Nykanen P, Sistonen L . Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 2001; 15: 1118–1131.

    Article  CAS  PubMed  Google Scholar 

  40. Shi Y, Mosser DD, Morimoto RI . Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 1998; 12: 654–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xing H, Wilkerson DC, Mayhew CN, Lubert EJ, Skaggs HS, Goodson ML et al. Mechanism of hsp70i gene bookmarking. Science 2005; 307: 421–423.

    Article  CAS  PubMed  Google Scholar 

  42. Sistonen L, Sarge KD, Phillips B, Abravaya K, Morimoto RI . Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol Cell Biol 1992; 12: 4104–4111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He H, Soncin F, Grammatikakis N, Li Y, Siganou A, Gong J et al. Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress. J Biol Chem 2003; 278: 35465–35475.

    Article  CAS  PubMed  Google Scholar 

  44. Garrido C, Gurbuxani S, Ravagnan L, Kroemer G . Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 2001; 286: 433–442.

    Article  CAS  PubMed  Google Scholar 

  45. Gabai VL, Budagova KR, Sherman MY . Increased expression of the major heat shock protein Hsp72 in human prostate carcinoma cells is dispensable for their viability but confers resistance to a variety of anticancer agents. Oncogene 2005; 24: 3328–3338.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to Novartis Pharma (Basle, Switzerland) for providing imatinib and nilotinib and Dr C Garrido (Faculty of Medicine, Dijon, France) for the pc-DNA3-Hsp70. This work was supported by grants from the: Ligue Régionale Contre le Cancer Comité de la Dordogne et des Pyrénées Atlantiques, 100% la vie, Fondation de France, Cancéropôle du Grand Sud-Ouest, Université Victor Ségalen Bordeaux 2 and INSERM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-M Pasquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pocaly, M., Lagarde, V., Etienne, G. et al. Overexpression of the heat-shock protein 70 is associated to imatinib resistance in chronic myeloid leukemia. Leukemia 21, 93–101 (2007). https://doi.org/10.1038/sj.leu.2404463

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404463

Keywords

This article is cited by

Search

Quick links