Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Endothelial cell-driven regulation of CD9 or motility-related protein-1 expression in multiple myeloma cells within the murine 5T33MM model and myeloma patients

Abstract

The cell surface expression of CD9, a glycoprotein of the tetraspanin family influencing several processes including cell motility and metastasis, inversely correlates with progression in several solid tumors. In the present work, we studied the expression and role of CD9 in multiple myeloma (MM) biology using the 5T33MM mouse model. The 5T33MMvitro cells were found to be CD9 negative. Injection of these cells in mice caused upregulation of CD9 expression, while reculturing them resulted in downregulation of CD9. Coculturing of CD9-negative 5T33MMvitro cells with BM endothelial cells (BMECs) resulted in a partial retrieval of CD9. Laser microdissection followed by real-time polymerase chain reaction and immunohistochemistry performed on bone sections of 5T33MMvivo diseased mice demonstrated strong local expression of CD9 on MM cells in contact with BMEC compared to MM cells further away. These findings were also confirmed by immunohistochemistry in MM patients. Neutralizing anti-CD9 antibodies inhibited transendothelial invasion of CD9-expressing human MM5.1 and murine 5T33MMvivo cells. In conclusion, we provide evidence that CD9 expression by the MM cells is upregulated in vivo by close interaction of the cells with BMEC and that CD9 is involved in transendothelial invasion, thus possibly mediating homing and/or spreading of the MM cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Caligaris-Cappio F, Bergui L, Gregoretti MG, Gaidano G, Gaboli M, Schena M et al. Role of bone marrow stromal cells in the growth of human multiple myeloma. Blood 1991; 77: 2688–2693.

    CAS  PubMed  Google Scholar 

  2. Lokhorst HM, Lamme T, de Smet M, Klein S, de Weger RA, van Oers R et al. Primary tumor cells of myeloma patients induce interleukin-6 secretion in long-term bone marrow cultures. Blood 1994; 84: 2269–2277.

    CAS  Google Scholar 

  3. Kuehl WM, Bergsagel PL . Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2002; 2: 175–187.

    Article  CAS  Google Scholar 

  4. Menu E, Asosingh K, Van Riet I, Croucher P, Van Camp B, Vanderkerken K . Myeloma cells (5TMM) and their interactions with the marrow environment. Blood Cells Mol Dis 2004; 33: 111–119.

    Article  Google Scholar 

  5. Bakkus MHC, Heirman C, Van Riet I, Van Camp B, Thielemans K . Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 1992; 80: 2326–2335.

    CAS  Google Scholar 

  6. Butcher EC, Picker LJ . Lymphocyte homing and homeostasis. Science 1996; 272: 60–66.

    Article  CAS  Google Scholar 

  7. Boucheix C, Rubinstein E . Tetraspanins. Cell Mol Life Sci 2001; 58: 1189–1205.

    Article  CAS  Google Scholar 

  8. Berditchevski F . Complexes of tetraspanins with integrins: more than meets the eyes. J Cell Sci 2001; 114: 4143–4151.

    CAS  PubMed  Google Scholar 

  9. Maecker HT, Todd SC, Levy S . The tetraspanin superfamily: molecular facilitators. FASEB J 1997; 11: 428–442.

    Article  CAS  Google Scholar 

  10. Hemler ME . Integrin associated proteins. Curr Opin Cell Biol 1998; 10: 578–585.

    Article  CAS  Google Scholar 

  11. Martin F, Roth DM, Jans DA, Pouton CW, Partrigde LJ, Monl PN et al. Tetraspanins in viral infections: a fundamental role in viral biology? J Virol 2005; 79: 10839–10851.

    Article  CAS  Google Scholar 

  12. Hemler ME . Specific tetraspanin functions. J Cell Biol 2001; 155: 1103–1107.

    Article  CAS  Google Scholar 

  13. Boucheix C, Duc GH, Jasmin C, Rubinstein E . Tetraspanins and malignancy. Expert Rev Mol Med 2001, 1–17.

  14. Wright MD, Moseley GW, van Spriel AB . Tetraspanin microdomains in immune cell signalling and malignant disease. Tissue Antigens 2004; 64: 533–542.

    Article  CAS  Google Scholar 

  15. Si Z, Hersey P . Expression of the neuroglandular antigen and analogues in melanoma. CD9 expression appears inversely correlated to metastatic potential of melanoma. Int J Cancer 1993; 54: 37–43.

    Article  CAS  Google Scholar 

  16. Miyake M, Nakano K, Leki Y, Adachi M, Huang CL, Itoi S et al. Motility related protein 1 (MRP-1/CD9) expression: inverse correlation with metastases in breast cancer. Cancer Res 1995; 55: 4127–4131.

    CAS  PubMed  Google Scholar 

  17. Adachi M, Taki T, Konishi T, Huang CI, Higashiyama M, Miyake M . Novel staging protocol for non-small-cell lung cancers according to MRP-1/CD9 and KAI1/CD82 gene expression. J Clin Oncol 1998; 16: 1397–1406.

    Article  CAS  Google Scholar 

  18. Mori M, Mimori K, Shiraishi T, Haraguchi M, Ueo H, Barnard GF et al. Motility related protein 1 (MRP1/CD9) expression in colon cancer. Clin Cancer Res 1998; 4: 1507–1510.

    CAS  PubMed  Google Scholar 

  19. Houle CD, Ding XY, Foley JF, Afshari CA, Barrett JC, Davis BJ . Loss of expression and altered localization of KAI1 and CD9 protein are associated with epithelial ovarian progression. Gynecol Oncol 2002; 86: 69–78.

    Article  Google Scholar 

  20. Ikeyama S, Koyama M, Yamaoko M, Sasada R, Miyake M . Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA. J Exp Med 1993; 177: 1231–1237.

    Article  CAS  Google Scholar 

  21. Miyake M, Inufusa H, Adachi M, Ishida H, Hashida H, Tokuhara T et al. Suppression of pulmonary metastasis using adenovirally motility related protein-1 (MRP-1/CD9) gene delivery. Oncogene 2000; 19: 5221–5226.

    Article  CAS  Google Scholar 

  22. Kubista B, Erovic BM, Klinger H, Sulzbacher I, Trieb K . CD9 expression is not a prognostic factor in human osteosarcoma. Cancer Lett 2004; 209: 105–110.

    Article  CAS  Google Scholar 

  23. Jamil F, Peston D, Shousha S . CD9 immunohistochemical staining of breast carcinoma: unlikely to provide useful prognostic information for routine use. Histopathology 2001; 39: 572–577.

    Article  CAS  Google Scholar 

  24. Sauer G, Windisch J, Kurzeder V, Heilmann V, Kreienberg R, Deissler H . Progression of cervical carcinoma is associated with down-regulation of CD9 but strong re-expression on sites of transendothelial invasion. Clin Cancer Res 2003; 9: 6426–6431.

    CAS  PubMed  Google Scholar 

  25. Barrena S, Almeida J, Yunta M, Lopez A, Fernandez-Mosteirin N, Giralt M et al. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia 2005; 19: 1376–1383.

    Article  CAS  Google Scholar 

  26. Drucker L, Tohami T, Tartakover-Matalon S, Zismanov V, Shapiro H, Radnay J et al. Promoter hypermethylation of tetraspanin members contributes to their silencing in myeloma cell lines. Carcinogenesis 2006; 27: 197–204.

    Article  CAS  Google Scholar 

  27. Radl J, De Glopper E, Schuit HRE . Idiopathic paraproteinemia II. Transplantation of the paraprotein-producing clone from old to young C57BL/KaLwRij mice. J Immunol 1979; 122: 609–613.

    CAS  PubMed  Google Scholar 

  28. Vanderkerken K, Asosingh K, Croucher P, Van Camp B . Multiple myeloma biology: lessons from the 5TMM models. Immunol Rev 2003; 194: 196–206.

    Article  CAS  Google Scholar 

  29. Vanderkerken K, De Raeve H, Goes E, Van Meirvenne S, Radl J, Van Riet I et al. Organ involvement and phenotypic adhesion profile of 5T2 and 5T33 myeloma cells in the C57BL/KaLwRij mouse. Br J Cancer 1997; 76: 451–460.

    Article  CAS  Google Scholar 

  30. De Raeve H, Asosingh K, Wisse E, Van Camp B, Van Marck E, Vanderkerken K . Part of the multiple myeloma-associated microvessels is functionally connected to the systemic circulation: a study in the murine 5T33MM model. Virchows Archiv 2004; 445: 389–395.

    Article  Google Scholar 

  31. Van Valckenborgh E, Bakkus M, Munaut C, Noel A, St Pierre Y, Asosingh K et al. Upregulation of matrix metalloproteinase-9 (MMP-9) in murine 5T33 multiple myeloma cells by interaction with bone marrow endothelial cell. Int J Cancer 2002; 101: 512–518.

    Article  CAS  Google Scholar 

  32. Imai K, Kobayashi M, Wang J, Ohiro Y, Hamada J, Cho Y et al. Selective transendothelial migration of hematopietic progenitor cells: a role in homing of progenitor cells. Blood 1999; 93: 149–156.

    CAS  PubMed  Google Scholar 

  33. Van Riet I, De Greef C, Aharchi F, Woischwill C, De Waele M, Bakkus M et al. Establishment and characterization of a human stroma-dependent myeloma cell line (MM5.1) and its stroma-independent variant (MM5.2). Leukemia 1997; 11: 284–293.

    Article  CAS  Google Scholar 

  34. Menu E, Asosingh K, Indraccolo S, De Raeve H, Van Riet I, Van Valckenborgh E et al. The involvement of stromal derived factor 1alpha in homing and progression of multiple myeloma in the 5TMM model. Haematologica 2006; 91: 605–612.

    CAS  PubMed  Google Scholar 

  35. Zhu D, van Arkel C, King CA, van Meirvenne S, de Greef C, Thielemans K et al. Immunoglobulin VH gene sequence analysis of spontaneous murine immunoglobulin-secreting B-cell tumors with clinical features of human disease. Immunology 1998; 93: 162–170.

    Article  CAS  Google Scholar 

  36. Van Valckenborgh E, De Raeve H, Devy L, Blacher S, Munaut C, Noel A et al. Murine 5T multiple myeloma cells induce angiogenesis in vitro and in vivo. Br J Cancer 2002; 86: 796–802.

    Article  CAS  Google Scholar 

  37. Oritani K, Wu X, Medina K, Hudson J, Miyake K, Gimble JM et al. Antibody ligation of CD9 modifies production of myeloid cells in long-term cultures. Blood 1996; 87: 2252–2261.

    CAS  PubMed  Google Scholar 

  38. Oka M, Tagoku K, Russell TL, Nakano Y, Hamazaki T, Meyer EM et al. CD9 is associated with leukaemia inhibitory factor-mediated maintenance of embryonic stem cells. Mol Biol Cell 2002; 13: 1274–1281.

    Article  CAS  Google Scholar 

  39. Tanio Y, Yamazaki H, Kunisada T, Miyake K, Hayashi SI . CD9 molecule expressed on stromal cells is involved in osteoclastogenesis. Exp Hematol 1999; 27: 853–859.

    Article  CAS  Google Scholar 

  40. Stojanovic M, Germain M, Nguyen M, Shore GC . BAP13 and its caspase cleavage product regulate cell surface expression of the tetraspanins and integrin-mediated cell survival. J Biol Chem 2005; 280: 30018–30024.

    Article  CAS  Google Scholar 

  41. Baudoux B, Castanares-Zapatero D, Leclerq-Smekens M, Berna N, Poumay Y . The tetraspanin CD9 associates with the integrin á6â4 in cultured human epidermal keratinocytes and is involved in cell motility. Eur J Cell Biol 2000; 79: 41–51.

    Article  CAS  Google Scholar 

  42. Dery MA, Michaud MD, Richard DE . Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol 2005; 37: 535–540.

    Article  CAS  Google Scholar 

  43. Bouchel C, Benoit P, Frachet P, Billard M, Worthington RE, Gagnon J et al. Molecular cloning of the CD9 antigen. J Biol Chem 1991; 266: 117–122.

    Google Scholar 

  44. Asosingh K, De Raeve H, Van Riet I, Van Camp B, Vanderkerken K . Multiple myeloma tumor progression in the 5T2MM murine model is a multistage and dynamic process of differentiation, proliferation, invasion and apoptosis. Blood 2003; 101: 3136–3141.

    Article  CAS  Google Scholar 

  45. Turker M . Gene silencing in mammalian cells and the spread of DNA methylation. Oncogene 2002; 21: 5388–5393.

    Article  CAS  Google Scholar 

  46. Asosingh K, Günthert U, Bakkus MHC, De Raeve H, Goes E, Van Riet I et al. In vivo induction of insulin-like growth factor-I receptor and CD44v6 confers homing and adhesion to murine multiple myeloma cells. Cancer Res 2000; 60: 3096–3104.

    CAS  Google Scholar 

  47. Longo N, Yáñes-Mó M, Mittelbrunn M, de la Rosa G, Munoz ML, Sánchez-Madrid F et al. Regulatory role of tetraspanin CD9 in tumor–endothelial cell interaction during transendothelial invasion of melanoma cells. Blood 2001; 98: 3717–3726.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T Herløv Jensen, N Arras, A Willems and C Seynaeve for expert technical assistance, Professor F Gorus (AZ VUB, Brussels) for serum paraprotein analysis, Dr M de Ridder (Kankeronderzoek, VUB, Brussels) for performing the hypoxia experiments and the Hematology and the Pathology departments of Vejle hospital for providing the human biopsies for the immunohistochemical study. The work was financially supported by the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (FWO-Vl), the Stichting tegen Kanker and the Onderzoeksraad Vrije Universiteit Brussel (OZR-VUB). K Vanderkerken is a postdoctoral fellow of FWO-Vl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Vanderkerken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Bruyne, E., Andersen, T., De Raeve, H. et al. Endothelial cell-driven regulation of CD9 or motility-related protein-1 expression in multiple myeloma cells within the murine 5T33MM model and myeloma patients. Leukemia 20, 1870–1879 (2006). https://doi.org/10.1038/sj.leu.2404343

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404343

Keywords

This article is cited by

Search

Quick links