Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Disorders

Gene expression signatures associated with the resistance to imatinib

Abstract

Imatinib (imatinib mesylate, STI-571, Gleevec) is a selective BCR-ABL tyrosine kinase inhibitor that has been used as a highly effective chemoagent for treating chronic myelogenous leukemia. However, the initial response to imatinib is often followed by the recurrence of a resistant form of the disease, which is major obstacle to many therapeutic modalities. The aim of this study was to identify the gene expression signatures that confer resistance to imatinib. A series of four resistant K562 sublines was established with different imatinib dosage (200, 400, 600 and 800 nM) and analyzed using microarray technology. The transcripts of the genes showing universal or dose-dependent expression changes across the resistant sublines were identified. The gene sets associated with the imatinib-resistance were also identified using gene set enrichment analysis. In the resistant K562 sublines, the transcription- and apoptosis-related expression signatures were upregulated, whereas those related to the protein and energy metabolism were downregulated. Several genes identified in this study such as IGF1 and RAB11A have the potential to become surrogate markers useful in a clinical evaluation of imatinib-resistant patients without BCR-ABL mutation. The expression signatures identified in this study provide insights into the mechanism of imatinib-resistance and are expected to facilitate the development of an effective diagnostic and therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. O'Dwyer ME, Druker BJ . Chronic myelogenous leukaemia – new therapeutic principles. J Intern Med 2001; 250: 3–9.

    Article  CAS  PubMed  Google Scholar 

  2. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–1042.

    Article  CAS  PubMed  Google Scholar 

  3. Hochhaus A, Kreil S, Corbin A, La RP, Lahaye T, Berger U et al. Roots of clinical resistance to STI-571 cancer therapy. Science 2001; 293: 876–880.

    Article  Google Scholar 

  4. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.

    Article  CAS  PubMed  Google Scholar 

  5. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  CAS  PubMed  Google Scholar 

  6. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 2003; 101: 690–698.

    Article  CAS  PubMed  Google Scholar 

  7. Hofmann WK, de VS, Elashoff D, Gschaidmeier H, Hoelzer D, Koeffler HP et al. Relation between resistance of Philadelphia-chromosome-positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and gene-expression profiles: a gene-expression study. Lancet 2002; 359: 481–486.

    Article  CAS  PubMed  Google Scholar 

  8. Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 2000; 96: 1070–1079.

    CAS  PubMed  Google Scholar 

  9. Hegedus T, Orfi L, Seprodi A, Varadi A, Sarkadi B, Keri G . Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochim Biophys Acta 2002; 1587: 318–325.

    Article  CAS  PubMed  Google Scholar 

  10. Widmer N, Colombo S, Buclin T, Decosterd LA . Functional consequence of MDR1 expression on imatinib intracellular concentrations. Blood 2003; 102: 1142.

    Article  CAS  PubMed  Google Scholar 

  11. Tipping AJ, Deininger MW, Goldman JM, Melo JV . Comparative gene expression profile of chronic myeloid leukemia cells innately resistant to imatinib mesylate. Exp Hematol 2003; 31: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  12. Ohmine K, Nagai T, Tarumoto T, Miyoshi T, Muroi K, Mano H et al. Analysis of gene expression profiles in an imatinib-resistant cell line, KCL22/SR. Stem Cells 2003; 21: 315–321.

    Article  CAS  PubMed  Google Scholar 

  13. Huber W, von HA, Sultmann H, Poustka A, Vingron M . Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 2002; 18: S96–S104.

    Article  PubMed  Google Scholar 

  14. Eisen MB, Spellman PT, Brown PO, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–14868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tseng YH, Butte AJ, Kokkotou E, Yechoor VK, Taniguchi CM, Kriauciunas KM et al. Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nat Cell Biol 2005; 7: 601–611.

    Article  CAS  PubMed  Google Scholar 

  16. Bartholomew DJ . A test of homogeneity for ordered alternatives. Biometrika 1959; 46: 36–48.

    Article  Google Scholar 

  17. Storey JD, Tibshirani R . Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003; 100: 9440–9445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 2004; 32: D258–D261.

    Article  CAS  PubMed  Google Scholar 

  19. Kanehisa M, Goto S, Kawashima S, Nakaya A . The KEGG databases at GenomeNet. Nucleic Acids Res 2002; 30: 42–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR . GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 2002; 31: 19–20.

    Article  CAS  PubMed  Google Scholar 

  21. Kim SY, Volsky DJ . PAGE: parametric analysis of gene set enrichment. BMC Bioinform 2005; 6: 144.

    Article  Google Scholar 

  22. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  23. Aster JC, Pear WS . Notch signaling in leukemia. Curr Opin Hematol 2001; 8: 237–244.

    Article  CAS  PubMed  Google Scholar 

  24. Zeng Q, Li S, Chepeha DB, Giordano TJ, Li J, Zhang H et al. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 2005; 8: 13–23.

    Article  CAS  PubMed  Google Scholar 

  25. Zumkeller W . IGFs and IGFBPs: surrogate markers for diagnosis and surveillance of tumour growth? Mol Pathol 2001; 54: 285–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stallings JD, Tall EG, Pentyala S, Rebecchi MJ . Nuclear translocation of phospholipase C-delta1 is linked to the cell cycle and nuclear phosphatidylinositol 4, 5-bisphosphate. J Biol Chem 2005; 280: 22060–22069.

    Article  CAS  PubMed  Google Scholar 

  27. Toby GG, Gherraby W, Coleman TR, Golemis EA . A novel RING finger protein, human enhancer of invasion 10, alters mitotic progression through regulation of cyclin B levels. Mol Cell Biol 2003; 23: 2109–2122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bao J, Zervos AS . Isolation and characterization of Nmi, a novel partner of Myc proteins. Oncogene 1996; 12: 2171–2176.

    CAS  PubMed  Google Scholar 

  29. Tsuruoka S, Ishibashi K, Yamamoto H, Wakaumi M, Suzuki M, Schwartz GJ et al. Functional analysis of ABCA8, a new drug transporter. Biochem Biophys Res Commun 2002; 298: 41–45.

    Article  CAS  PubMed  Google Scholar 

  30. Matsumoto N, Yoneda-Kato N, Iguchi T, Kishimoto Y, Kyo T, Sawada H et al. Elevated MLF1 expression correlates with malignant progression from myelodysplastic syndrome. Leukemia 2000; 14: 1757–1765.

    Article  CAS  PubMed  Google Scholar 

  31. Gebhardt C, Breitenbach U, Richter KH, Furstenberger G, Mauch C, Angel P et al. c-Fos-dependent induction of the small ras-related GTPase Rab11a in skin carcinogenesis. Am J Pathol 2005; 167: 243–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34: 267–273.

    Article  CAS  PubMed  Google Scholar 

  33. Holyoake TL, Jiang X, Jorgensen HG, Graham S, Alcorn MJ, Laird C et al. Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor-independent growth in vitro in association with up-regulation of expression of interleukin-3. Blood 2001; 97: 720–728.

    Article  CAS  PubMed  Google Scholar 

  34. Elliott RL, Blobe GC . Role of transforming growth factor Beta in human cancer. J Clin Oncol 2005; 23: 2078–2093.

    Article  CAS  PubMed  Google Scholar 

  35. Yan Z, Deng X, Friedman E . Oncogenic Ki-ras confers a more aggressive colon cancer phenotype through modification of transforming growth factor-beta receptor III. J Biol Chem 2001; 276: 1555–1563.

    Article  CAS  PubMed  Google Scholar 

  36. Mandanas RA, Leibowitz DS, Gharehbaghi K, Tauchi T, Burgess GS, Miyazawa K et al. Role of p21 RAS in p210 bcr-abl transformation of murine myeloid cells. Blood 1993; 82: 1838–1847.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Korean Leukemia Cell and Gene Bank for providing the imatinib-resistant CML samples and S Yim for critical appraisal of this paper. This study was supported by a grant of the Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (0405-BC02-0604-0004), the Catholic Medical Center Research Foundation (2004) and Ministry of Science and Technology (2004-01303; M1-0416-22-0006), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J W Kim.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, YJ., Kim, TM., Kim, DW. et al. Gene expression signatures associated with the resistance to imatinib. Leukemia 20, 1542–1550 (2006). https://doi.org/10.1038/sj.leu.2404310

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404310

Keywords

This article is cited by

Search

Quick links