Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery

Abstract

Membrane-derived vesicles (MV) are released from the surface of activated eucaryotic cells and exert pleiotropic effects on surrounding cells. Since the maintenance of pluripotency and undifferentiated propagation of embryonic stem (ES) cells in vitro requires tight cell to cell contacts and effective intercellular signaling, we hypothesize that MV derived from ES cells (ES-MV) express stem cell-specific molecules that may also support self-renewal and expansion of adult stem cells. To address this hypothesis, we employed expansion of hematopoietic progenitor cells (HPC) as a model. We found that ES-MV (10 μg/ml) isolated from murine ES cells (ES-D3) in serum-free cultures significantly (i) enhanced survival and improved expansion of murine HPC, (ii) upregulated the expression of early pluripotent (Oct-4, Nanog and Rex-1) and early hematopoietic stem cells (Scl, HoxB4 and GATA 2) markers in these cells, and (iii) induced phosphorylation of MAPK p42/44 and serine-threonine kinase AKT. Furthermore, molecular analysis revealed that ES-MV express Wnt-3 protein and are selectively highly enriched in mRNA for several pluripotent transcription factors as compared to parental ES cells. More important, this mRNA could be delivered by ES-MV to target cells and translated into the corresponding proteins. The biological effects of ES-MV were inhibited after heat inactivation or pretreatment with RNAse, indicating a major involvement of protein and mRNA components of ES-MV in the observed phenomena. We postulate that ES-MV may efficiently expand HPC by stimulating them with ES-MV expressed ligands (e.g., Wnt-3) as well as increase their pluripotency after horizontal transfer of ES-derived mRNA.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Levine SJ . Mechanisms of soluble cytokine receptor generation. J Immunol 2004; 173: 5343–5348.

    Article  CAS  Google Scholar 

  2. Lucas WJ, Yoo BC, Kragler F . RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2001; 2: 849–857.

    Article  CAS  Google Scholar 

  3. Albi E, Viola Magni MP . The role of intranuclear lipids. Biol Cell 2004; 96: 657–667.

    Article  CAS  Google Scholar 

  4. Taback B, Hoon DS . Circulating nucleic acids and proteomics of plasma/serum: clinical utility. Ann N Y Acad Sci 2004; 1022: 1–8.

    Article  CAS  Google Scholar 

  5. Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R, Turner AR et al. Platelet-derived microparticles bind to hematopoietic progenitor cells and enhance their engraftment. Blood 2001; 98: 3143–3149.

    Article  CAS  Google Scholar 

  6. Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol 2002; 30: 450–459.

    Article  CAS  Google Scholar 

  7. Morel O, Toti F, Hugel B, Freyssinet JM . Cellular microparticles: a disseminated storage pool of bioactive vascular effectors. Curr Opin Hematol 2004; 11: 156–164.

    Article  CAS  Google Scholar 

  8. Christian JL . Argosomes: intracellular transport vehicles for intercellular signals? Sci STKE 2002; 2002: PE13.

    PubMed  Google Scholar 

  9. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ . Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 1999; 94: 3791–3799.

    CAS  PubMed  Google Scholar 

  10. Nomura S, Nakamura T, Cone J, Tandon NN, Kambayashi J . Cytometric analysis of high shear-induced platelet microparticles and effect of cytokines on microparticle generation. Cytometry 2000; 40: 173–181.

    Article  CAS  Google Scholar 

  11. VanWijk MJ, VanBavel E, Sturk A, Nieuwland R . Microparticles in cardiovascular diseases. Cardiovasc Res 2003; 59: 277–287.

    Article  CAS  Google Scholar 

  12. Rozmyslowicz T, Majka M, Kijowski J, Murphy SL, Conover DO, Poncz M et al. Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. AIDS 2003; 17: 33–42.

    Article  CAS  Google Scholar 

  13. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 2005; 113: 752–760.

    Article  CAS  Google Scholar 

  14. Fackler OT, Peterlin BM . Endocytic entry of HIV-1. Curr Biol 2000; 10: 1005–1008.

    Article  CAS  Google Scholar 

  15. Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M et al. Cells release prions in association with exosomes. Proc Natl Acad Sci USA 2004; 101: 9683–9688.

    Article  CAS  Google Scholar 

  16. Gould SJ, Booth AM, Hildreth JE . The Trojan exosome hypothesis. Proc Natl Acad Sci USA 2003; 100: 10592–10597.

    Article  CAS  Google Scholar 

  17. Cowan CA, Atienza J, Melton DA, Eggan K . Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 2005; 309: 1369–1373.

    Article  CAS  Google Scholar 

  18. Do JT, Scholer HR . Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 2004; 22: 941–949.

    Article  CAS  Google Scholar 

  19. Landsverk HB, Hakelien AM, Kuntziger T, Robl JM, Skalhegg BS, Collas P . Reprogrammed gene expression in a somatic cell-free extract. EMBO Rep 2002; 3: 384–389.

    Article  CAS  Google Scholar 

  20. Western PS, Surani MA . Nuclear reprogramming – alchemy or analysis? Nat Biotechnol 2002; 20: 445–446.

    Article  CAS  Google Scholar 

  21. Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic progenitor cells to an SDF-1 gradient. Blood 2005; 105: 40–48.

    Article  CAS  Google Scholar 

  22. Ratajczak J, Reca R, Kucia M, Majka M, Allendorf DJ, Baran JT et al. Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic progenitor cells in bone marrow. Blood 2004; 103: 2071–2078.

    Article  CAS  Google Scholar 

  23. Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA et al. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 2001; 97: 3075–3085.

    Article  CAS  Google Scholar 

  24. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003; 423: 448–452.

    Article  CAS  Google Scholar 

  25. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    Article  CAS  Google Scholar 

  26. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH . Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004; 10: 55–63.

    Article  CAS  Google Scholar 

  27. Halicka HD, Bedner E, Darzynkiewicz Z . Segregation of RNA and separate packaging of DNA and RNA in apoptotic bodies during apoptosis. Exp Cell Res 2000; 260: 248–256.

    Article  CAS  Google Scholar 

  28. Ceccarini M, Guidoni L, Luciani AM, Mariutti G, Rosi A, Viti V . Biochemical and NMR studies on structure and release conditions of RNA-containing vesicles shed by human colon adenocarcinoma cells. Int J Cancer 1989; 44: 714–721.

    Article  CAS  Google Scholar 

  29. Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman MJ, Spetz AL et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA 2001; 98: 6407–6411.

    Article  CAS  Google Scholar 

  30. Bergsmedh A, Szeles A, Spetz AL, Holmgren L . Loss of the p21(Cip1/Waf1) cyclin kinase inhibitor results in propagation of horizontally transferred DNA. Cancer Res 2002; 62: 575–579.

    CAS  PubMed  Google Scholar 

  31. Holmgren L, Szeles A, Rajnavolgyi E, Folkman J, Klein G, Ernberg I et al. Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood 1999; 93: 3956–3963.

    CAS  PubMed  Google Scholar 

  32. de la Taille A, Chen MW, Burchardt M, Chopin DK, Buttyan R . Apoptotic conversion: evidence for exchange of genetic information between prostate cancer cells mediated by apoptosis. Cancer Res 1999; 59: 5461–5463.

    CAS  PubMed  Google Scholar 

  33. Hakelien AM, Landsverk HB, Robl JM, Skalhegg BS, Collas P . Reprogramming fibroblasts to express T-cell functions using cell extracts. Nat Biotechnol 2002; 20: 460–466.

    Article  CAS  Google Scholar 

  34. Graves LE, Ariztia EV, Navari JR, Matzel HJ, Stack MS, Fishman DA . Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res 2004; 64: 7045–7049.

    Article  CAS  Google Scholar 

  35. Greco V, Hannus M, Eaton S . Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 2001; 106: 633–645.

    Article  CAS  Google Scholar 

  36. Speck RF, Esser U, Penn ML, Eckstein DA, Pulliam L, Chan SY et al. A trans-receptor mechanism for infection of CD4-negative cells by human immunodeficiency virus type 1. Curr Biol 1999; 9: 547–550.

    Article  CAS  Google Scholar 

  37. Cohen RS . The role of membranes and membrane trafficking in RNA localization. Biol Cell 2005; 97: 5–18.

    Article  CAS  Google Scholar 

  38. Larrabee PB, Johnson KL, Lai C, Ordovas J, Cowan JM, Tantravahi U et al. Global gene expression analysis of the living human fetus using cell-free messenger RNA in amniotic fluid. JAMA 2005; 293: 836–842.

    Article  CAS  Google Scholar 

  39. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH . Nanotubular highways for intercellular organelle transport. Science 2004; 303: 1007–1010.

    Article  CAS  Google Scholar 

  40. Vidulescu C, Clejan S, O'Connor KC . Vesicle traffic through intercellular bridges in DU 145 human prostate cancer cells. J Cell Mol Med 2004; 8: 388–396.

    Article  Google Scholar 

  41. Distler JH, Jungel A, Huber LC, Seemayer CA, Reich III CF, Gay RE et al. The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc Natl Acad Sci USA 2005; 102: 2892–2897.

    Article  CAS  Google Scholar 

  42. Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ . Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol 2004; 6: 532–539.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant R01 CA106281-01 to MZR and a GA CR 301/03/1122 Grant to PD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Z Ratajczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratajczak, J., Miekus, K., Kucia, M. et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20, 847–856 (2006). https://doi.org/10.1038/sj.leu.2404132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404132

Keywords

This article is cited by

Search

Quick links