Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodysplasias

Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients

Abstract

The serine/threonine kinase Akt, a downstream effector of phosphatidylinositol 3-kinase (PI3K), is known to play an important role in antiapoptotic signaling and has been implicated in the aggressiveness of a number of different human cancers including acute myeloid leukemia (AML). The progression of myelodysplastic syndromes (MDSs) to AML is thought to be associated with abrogation of apoptotic control mechanisms. However, little is known about signal transduction pathways which may be involved in enhanced survival of MDS cells. In this report, we have performed immunocytochemical and flow cytometric analysis to evaluate the levels of activated Akt in bone marrow or peripheral blood mononuclear cells from patients diagnosed with MDS. We observed high levels of Ser473 phosphorylated Akt (p-Akt) staining in 90% of the cases (n=22) diagnosed as high-risk MDS, whereas mononuclear cells from normal bone marrow or low-risk MDS patients showed low or absent Ser473 p-Akt staining. Furthermore, all high-risk MDS patients also demonstrated high expression of the Class I PI3K p110δ catalytic subunit and a decreased expression of PTEN. Taken together, our results suggest that Akt activation might be one of the factors contributing to the decreased apoptosis rate observed in patients with high-risk MDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA . JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18: 189–218.

    Article  CAS  PubMed  Google Scholar 

  2. Woodgett JR . Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol 2005; 17: 150–157.

    Article  CAS  PubMed  Google Scholar 

  3. van der Geer P, Hunter T, Lindberg RA . Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 1994; 10: 251–337.

    Article  CAS  PubMed  Google Scholar 

  4. Vivanco I, Sawyers CL . The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489–501.

    Article  CAS  PubMed  Google Scholar 

  5. Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ et al. P110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci USA 1997; 94: 4330–4335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Toker A, Cantley LC . Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 1997; 387: 673–676.

    Article  CAS  PubMed  Google Scholar 

  7. Brazil DP, Yang ZZ, Hemmings BA . Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 2004; 29: 233–242.

    Article  CAS  PubMed  Google Scholar 

  8. Franke TF, Kaplan DR, Cantley LC, Toker A . Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 1997; 275: 665–668.

    Article  CAS  PubMed  Google Scholar 

  9. Nicholson KM, Anderson NG . The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002; 14: 381–395.

    Article  CAS  PubMed  Google Scholar 

  10. Kelekar A, Chang BS, Harlan JE, Fesik SW, Thompson CB . Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-XL. Mol Cell Biol 1997; 17: 7040–7046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–868.

    Article  CAS  PubMed  Google Scholar 

  12. Yamada KM, Araki M . Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 2001; 114: 2375–2382.

    CAS  PubMed  Google Scholar 

  13. Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA 1999; 96: 6199–6204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Steelman LS, Bertrand FE, McCubrey JA . The complexity of PTEN: mutation, marker and potential target for therapeutic intervention. Expert Opin Ther Targets 2004; 8: 537–550.

    Article  CAS  PubMed  Google Scholar 

  15. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M . Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003; 102: 972–980.

    Article  CAS  PubMed  Google Scholar 

  16. Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK et al. Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 2003; 17: 995–997.

    Article  CAS  PubMed  Google Scholar 

  17. Martelli AM, Tazzari PL, Tabellini G, Bortul R, Billi AM, Manzoli L et al. A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells. Leukemia 2003; 17: 1794–1805.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M et al. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 2004; 18: 267–275.

    Article  CAS  PubMed  Google Scholar 

  19. Kouides PA, Bennett JM . Understanding the myelodysplastic syndromes. Oncologist 1997; 2: 389–401.

    CAS  PubMed  Google Scholar 

  20. Ma L, Delforge M, van Duppen V, Verhoef G, Emanuel B, Boogaerts M et al. Circulating myeloid and lymphoid precursor dendritic cells are clonally involved in myelodysplastic syndromes. Leukemia 2004; 18: 1451–1456.

    Article  CAS  PubMed  Google Scholar 

  21. Greenberg PL . Apoptosis and its role in the myelodysplastic syndromes: implications for disease natural history and treatment. Leuk Res 1998; 22: 1123–1136.

    Article  CAS  PubMed  Google Scholar 

  22. Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A . The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood 2000; 96: 3932–3938.

    CAS  PubMed  Google Scholar 

  23. Parker JE, Mufti GJ . The myelodysplastic syndromes: a matter of life or death. Acta Haematol 2004; 111: 78–99.

    Article  PubMed  Google Scholar 

  24. Sujobert P, Bardet V, Cornillet-Lefebvre P, Hayflick JS, Prie N, Verdier F et al. Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 2005; 106: 1063–1066.

    Article  CAS  PubMed  Google Scholar 

  25. Tazzari PL, Cappellini A, Grafone T, Mantovani I, Ricci F, Billi AM et al. Detection of serine 473 phosphorylated Akt in acute myeloid leukaemia blasts by flow cytometry. Br J Haematol 2004; 126: 675–681.

    Article  CAS  PubMed  Google Scholar 

  26. Sato N, Kishi K, Toba K, Watanabe K, Itoh H, Narita M et al. Simultaneous expression of CD13, CD22 and CD25 is related to the expression of Fc epsilon R1 in non-lymphoid leukemia. Leuk Res 2004; 28: 691–698.

    CAS  PubMed  Google Scholar 

  27. Dhodapkar KM, Kaufman JL, Ehlers M, Banerjee DK, Bonvini E, Koenig S et al. Selective blockade of inhibitory Fcgamma receptor enables human dendritic cell maturation with IL-12p70 production and immunity to antibody-coated tumor cells. Proc Natl Acad Sci USA 2005; 102: 2910–2915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997; 89: 2079–2088.

    CAS  PubMed  Google Scholar 

  29. Xu Z, Stokoe D, Kane LP, Weiss A . The inducible expression of the tumor suppressor gene PTEN promotes apoptosis and decreases cell size by inhibiting the PI3K/Akt pathway in Jurkat T cells. Cell Growth Differ 2002; 13: 285–296.

    CAS  PubMed  Google Scholar 

  30. Cappellini A, Tabellini G, Zweyer M, Bortul R, Tazzari PL, Billi AM et al. The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27(Kip1) and control of cyclin D1 expression. Leukemia 2003; 17: 2157–2167.

    Article  CAS  PubMed  Google Scholar 

  31. Hsu J, Shi Y, Krajewski S, Renner S, Fisher M, Reed JC et al. The AKT kinase is activated in multiple myeloma tumor cells. Blood 2001; 98: 2853–2855.

    Article  CAS  PubMed  Google Scholar 

  32. Knapp W, Strobl H, Majdic O . Flow cytometric analysis of cell-surface and intracellular antigens in leukemia diagnosis. Cytometry 1994; 18: 187–198.

    Article  CAS  PubMed  Google Scholar 

  33. Wang NM, Chang JG, Liu TC, Lin SF, Peng CT, Tsai FJ et al. Aberrant transcripts of FHIT, TSG101 and PTEN/MMAC1 genes in normal peripheral mononuclear cells. Int J Oncol 2000; 16: 75–80.

    CAS  PubMed  Google Scholar 

  34. Gersuk GM, Beckham C, Loken MR, Kiener P, Anderson JE, Farrand A et al. A role for tumour necrosis factor-alpha, Fas and Fas-Ligand in marrow failure associated with myelodysplastic syndrome. Br J Haematol 1998; 103: 176–188.

    Article  CAS  PubMed  Google Scholar 

  35. Wilson HM, Lesnikov V, Plymate SR, Ward J, Deeg HJ . High IGFBP-3 levels in marrow plasma in early-stage MDS: effects on apoptosis and hemopoiesis. Leukemia 2005; 19: 580–585.

    Article  CAS  PubMed  Google Scholar 

  36. Davis RE, Greenberg PL . Bcl-2 expression by myeloid precursors in myelodysplastic syndromes: relation to disease progression. Leuk Res 1998; 22: 767–777.

    Article  CAS  PubMed  Google Scholar 

  37. Bouscary D, De Vos J, Guesnu M, Jondeau K, Viguier F, Melle J et al. Fas/Apo-1 (CD95) expression and apoptosis in patients with myelodysplastic syndromes. Leukemia 1997; 11: 839–845.

    Article  CAS  PubMed  Google Scholar 

  38. Gore SD . Inhibitors of signaling in myelodysplastic syndrome. Best Pract Res Clin Haematol 2004; 17: 613–622.

    Article  CAS  PubMed  Google Scholar 

  39. Shih LY, Huang CF, Wang PN, Wu JH, Lin TL, Dunn P et al. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 2004; 18: 466–475.

    Article  CAS  PubMed  Google Scholar 

  40. Kurzrock R, Kantarjian HM, Cortes JE, Singhania N, Thomas DA, Wilson EF et al. Farnesyltransferase inhibitor R115777 in myelodysplastic syndrome: clinical and biologic activities in the phase 1 setting. Blood 2003; 102: 4527–4534.

    Article  CAS  PubMed  Google Scholar 

  41. Birkenkamp KU, Geugien M, Schepers H, Westra J, Lemmink HH, Vellenga E . Constitutive NF-kappaB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia 2004; 18: 103–112.

    Article  CAS  PubMed  Google Scholar 

  42. Sanz C, Richard C, Prosper F, Fernandez-Luna JL . Nuclear factor k B is activated in myelodysplastic bone marrow cells. Haematologica 2002; 87: 1005–1006.

    CAS  PubMed  Google Scholar 

  43. Guthridge MA, Barry EF, Felquer FA, McClure BJ, Stomski FC, Ramshaw H et al. The phosphoserine-585-dependent pathway of the GM-CSF/IL-3/IL-5 receptors mediates hematopoietic cell survival through activation of NF-kappaB and induction of bcl-2. Blood 2004; 103: 820–827.

    Article  CAS  PubMed  Google Scholar 

  44. Bortul R, Tazzari PL, Cappellini A, Tabellini G, Billi AM, Bareggi R et al. Constitutively active Akt1 protects HL60 leukemia cells from TRAIL-induced apoptosis through a mechanism involving NF-kappaB activation and cFLIP(L) up-regulation. Leukemia 2003; 17: 379–389.

    Article  CAS  PubMed  Google Scholar 

  45. Fuhler GM, Drayer AL, Vellenga E . Decreased phosphorylation of protein kinase B and extracellular signal-regulated kinase in neutrophils from patients with myelodysplasia. Blood 2003; 101: 1172–1180.

    Article  CAS  PubMed  Google Scholar 

  46. Grandage VL, Gale RE, Linch DC, Khwaja A . PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways. Leukemia 2005; 19: 586–594.

    Article  CAS  PubMed  Google Scholar 

  47. Lunghi P, Tabilio A, Lo-Coco F, Pelicci PG, Bonati A . Arsenic trioxide (ATO) and MEK1 inhibition synergize to induce apoptosis in acute promyelocytic leukemia cells. Leukemia 2005; 19: 234–244.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from AIRC, Italian MIUR Cofin 2003 and FIRB 2001, ‘Hairshow A.I.L.’, Fondazione del Monte di Bologna e Ravenna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Martelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyåkern, M., Tazzari, P., Finelli, C. et al. Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia 20, 230–238 (2006). https://doi.org/10.1038/sj.leu.2404057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404057

Keywords

This article is cited by

Search

Quick links