Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Acute Non-Lymphocytic Leukemias

DEK-CAN molecular monitoring of myeloid malignancies could aid therapeutic stratification

Abstract

The t(6;9)(p23;q34) is a recurrent chromosomal abnormality observed in 1% of acute myelogenous leukemia (AML), which generates a fusion transcript between DEK and CAN/NUP214 genes. We used a DEK-CAN real-time quantitative (RQ)-PCR strategy to analyze 79 retrospective and prospective samples from 12 patients. Five patients reached DEK-CAN negativity (sensitivity 105); all underwent early allogeneic hematopoietic stem cell transplantation (median 5.5 months from diagnosis) with some demonstrating molecular positivity at the time of allograft. All four cases in CCR with adequate follow-up (median 18.5 months, range 13–95) demonstrate persistent molecular negativity, whereas all seven patients with persistent DEK-CAN positivity died at a median of 12 months from diagnosis (range 7–27). We conclude that DEK-CAN molecular monitoring by RQ-PCR in t(6;9) malignancies is a useful tool for individual patient management and that molecular negativity is indispensable for survival, but should not be a prerequisite for allografting in this rare, poor prognosis, subset of AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Rowley JD, Potter D . Chromosomal banding patterns in acute nonlymphocytic leukemia. Blood 1976; 47: 705–721.

    CAS  PubMed  Google Scholar 

  2. Lillington DM, MacCallum PK, Lister TA, Gibbons B . Translocation t(6;9)(p23;q34) in acute myeloid leukemia without myelodysplasia or basophilia: two cases and a review of the literature. Leukemia 1993; 7: 527–531.

    CAS  PubMed  Google Scholar 

  3. Alsabeh R, Brynes RK, Slovak ML, Arber DA . Acute myeloid leukemia with t(6;9)(p23;q34): association with myelodysplasia, basophilia, and initial CD34 negative immunophenotype. Am J Clin Pathol 1997; 107: 430–437.

    Article  CAS  Google Scholar 

  4. Soekarman D, von Lindern M, Daenen S, de Jong B, Fonatsch C, Heinze B et al. The translocation (6;9)(p23;q34) shows consistent rearrangement of two genes and defines a myeloproliferative disorder with specific clinical features. Blood 1992; 79: 2990–2997.

    CAS  PubMed  Google Scholar 

  5. Shapira MY, Hirshberg B, Amir G, Rund D . (6;9) translocation in myelodysplastic syndrome. Cancer Genet Cytogenet 1999; 112: 57–59.

    Article  CAS  Google Scholar 

  6. von Lindern M, Poustka A, Lerach H, Grosveld G . The (6;9) chromosome translocation, associated with a specific subtype of acute nonlymphocytic leukemia, leads to aberrant transcription of a target gene on 9q34. Mol Cell Biol 1990; 10: 4016–4026.

    Article  CAS  Google Scholar 

  7. Waldmann T, Eckerich C, Baack M, Gruss C . The ubiquitous chromatin protein DEK alters the structure of DNA by introducing positive supercoils. J Biol Chem 2002; 277: 24988–24994.

    Article  CAS  Google Scholar 

  8. Waldmann T, Baack M, Richter N, Gruss C . Structure-specific binding of the proto-oncogene protein DEK to DNA. Nucleic Acids Res 2003; 31: 7003–7010.

    Article  CAS  Google Scholar 

  9. Casas S, Nagy B, Elonen E, Aventin A, Larramendy ML, Sierra J et al. Aberrant expression of HOXA9, DEK, CBL and CSF1R in acute myeloid leukemia. Leuk Lymphoma 2003; 44: 1935–1941.

    Article  CAS  Google Scholar 

  10. Boer J, Bonten-Surtel J, Grosveld G . Overexpression of the nucleoporin CAN/NUP214 induces growth arrest, nucleocytoplasmic transport defects, and apoptosis. Mol Cell Biol 1998; 18: 1236–1247.

    Article  CAS  Google Scholar 

  11. Kraemer D, Wozniak RW, Blobel G, Radu A . The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. Proc Natl Acad Sci USA 1994; 91: 1519–1523.

    Article  CAS  Google Scholar 

  12. von Lindern M, Breems D, van Baal S, Adriaansen H, Grosveld G . Characterization of the translocation breakpoint sequences of two DEK-CAN fusion genes present in t(6;9) acute myeloid leukemia and a SET-CAN fusion gene found in a case of acute undifferentiated leukemia. Genes Chromosomes Cancer 1992; 5: 227–234.

    Article  CAS  Google Scholar 

  13. Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 2004; 36: 1084–1089.

    Article  CAS  Google Scholar 

  14. von Lindern M, Fornerod M, van Baal S, Jaegle M, de Wit T, Buijs A et al. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol 1992; 12: 1687–1697.

    Article  CAS  Google Scholar 

  15. Jaeger U, Kainz B . Monitoring minimal residual disease in AML: the right time for real time. Ann Hematol 2003; 82: 139–147.

    CAS  PubMed  Google Scholar 

  16. Yin JA, Tobal K . Detection of minimal residual disease in acute myeloid leukaemia: methodologies, clinical and biological significance. Br J Haematol 1999; 106: 578–590.

    Article  CAS  Google Scholar 

  17. Schnittger S, Weisser M, Schoch C, Hiddemann W, Haferlach T, Kern W . New score predicting for prognosis in PML-RARA+, AML1-ETO+, or CBFBMYH11+ acute myeloid leukemia based on quantification of fusion transcripts. Blood 2003; 102: 2746–2755.

    Article  CAS  Google Scholar 

  18. Boer J, Mahmoud H, Raimondi S, Grosveld G, Krance R . Loss of the DEK-CAN fusion transcript in a child with t(6;9) acute myeloid leukemia following chemotherapy and allogeneic bone marrow transplantation. Leukemia 1997; 11: 299–300.

    Article  CAS  Google Scholar 

  19. Nakano H, Shimamoto Y, Suga K, Kobayashi M . Detection of minimal residual disease in a patient with acute myeloid leukemia and t(6;9) at the time of peripheral blood stem cell transplantation. Acta Haematol 1995; 94: 139–141.

    Article  CAS  Google Scholar 

  20. Maeda T, Kosugi S, Ujiie H, Osumi K, Fukui T, Yoshida H et al. Localized relapse in bone marrow in a posttransplantation patient with t(6;9) acute myeloid leukemia. Int J Hematol 2003; 77: 522–525.

    Article  Google Scholar 

  21. Toyosawa M, Shinohara K, Ariyoshi K, Ando T, Kobayashi M, Hikiji K . The detection of minimal residual disease by DEK/CAN chimeric m-RNA in a case of AML M2 with translocation t(6;9) (p23;q34) after chemotherapy and peripheral blood stem cell transplantation. Rinsho Ketsueki 1997; 38: 33–40.

    CAS  PubMed  Google Scholar 

  22. Ostergaard M, Stentoft J, Hokland P . A real-time quantitative RT-PCR assay for monitoring DEK-CAN fusion transcripts arising from translocation t(6;9) in acute myeloid leukemia. Leuk Res 2004; 28: 1213–1215.

    Article  CAS  Google Scholar 

  23. Tobal K, Frost L, Liu Yin JA . Quantification of DEK-CAN fusion transcript by real-time reverse transcription polymerase reaction in patients with t(6;9) acute myeloid leukemia. Haematologica 2004; 89: 1267–1269.

    PubMed  Google Scholar 

  24. Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)—a Europe against cancer program. Leukemia 2003; 17: 2474–2486.

    Article  CAS  Google Scholar 

  25. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia 2003; 17: 2318–2357.

    Article  CAS  Google Scholar 

  26. Libura M, Asnafi V, Tu A, Delabesse E, Tigaud I, Cymbalista F et al. FLT3 and MLL intragenic abnormalities in AML reflect a common category of genotoxic stress. Blood 2003; 102: 2198–2204.

    Article  CAS  Google Scholar 

  27. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  Google Scholar 

  28. Pearson MG, Vardiman JW, Le Beau MM, Rowley JD, Schwartz S, Kerman SL et al. Increased numbers of marrow basophils may be associated with a t(6;9) in ANLL. Am J Hematol 1985; 18: 393–403.

    Article  CAS  Google Scholar 

  29. Cuneo A, Kerim S, Vandenberghe E, Van Orshoven A, Rodhain J, Bosly A et al. Translocation t(6;9) occurring in acute myelofibrosis, myelodysplastic syndrome, and acute nonlymphocytic leukemia suggests multipotent stem cell involvement. Cancer Genet Cytogenet 1989; 42: 209–219.

    Article  CAS  Google Scholar 

  30. Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002; 100: 4325–4336.

    Article  CAS  Google Scholar 

  31. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 2000; 96: 4075–4083.

    CAS  Google Scholar 

  32. Gallagher RE, Yeap BY, Bi W, Livak KJ, Beaubier N, Rao S et al. Quantitative real-time RT-PCR analysis of PML-RAR alpha mRNA in acute promyelocytic leukemia: assessment of prognostic significance in adult patients from intergroup protocol 0129. Blood 2003; 101: 2521–2528.

    Article  CAS  Google Scholar 

  33. Tobal K, Newton J, Macheta M, Chang J, Morgenstern G, Evans PA et al. Molecular quantitation of minimal residual disease in acute myeloid leukemia with t(8;21) can identify patients in durable remission and predict clinical relapse. Blood 2000; 95: 815–819.

    CAS  PubMed  Google Scholar 

  34. Morschhauser F, Cayuela JM, Martini S, Baruchel A, Rousselot P, Socie G et al. Evaluation of minimal residual disease using reverse-transcription polymerase chain reaction in t(8;21) acute myeloid leukemia: a multicenter study of 51 patients. J Clin Oncol 2000; 18: 788–794.

    Article  CAS  Google Scholar 

  35. Ohminami H, Yasukawa M, Kaneko S, Yakushijin Y, Abe Y, Kasahara Y et al. Fas-independent and nonapoptotic cytotoxicity mediated by a human CD4(+) T-cell clone directed against an acute myelogenous leukemia-associated DEK-CAN fusion peptide. Blood 1999; 93: 925–935.

    CAS  PubMed  Google Scholar 

  36. Makita M, Azuma T, Hamaguchi H, Niiya H, Kojima K, Fujita S et al. Leukemia-associated fusion proteins, dek-can and bcr-abl, represent immunogenic HLA-DR-restricted epitopes recognized by fusion peptide-specific CD4+ T lymphocytes. Leukemia 2002; 16: 2400–2407.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge all the physicians and biologists for providing clinical and biological data and samples for DEK-CAN monitoring. We especially thank Dr Vasselon (Hôpital Nord, St-Etienne, France), Pr Leblond and Pr Merle-Béral (Hôpital de la Pitié-Salpétrière, Paris, France), Pr Leverger and Dr Adam (Hôpital Trousseau, Paris, France), Pr Rio (Hôtel Dieu, Paris, France), Dr Noguerra and Pr Baruchel (Hôpital St-Louis, Paris, France). Marta Libura is a recipient of a scholarship from the Postgraduate School of Molecular Medicine at the Medical University of Warsaw. This work was supported by la Ligue Nationale Contre le Cancer and l'Association de la Recherche sur le Cancer (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Macintyre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garçon, L., Libura, M., Delabesse, E. et al. DEK-CAN molecular monitoring of myeloid malignancies could aid therapeutic stratification. Leukemia 19, 1338–1344 (2005). https://doi.org/10.1038/sj.leu.2403835

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403835

Keywords

This article is cited by

Search

Quick links