Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Molecular Cytogenetics

A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias

Abstract

Chromosomal translocations with breakpoints in T-cell receptor (TCR) genes are recurrent in T-cell malignancies. These translocations involve the TCRαδ gene (14q11), the TCRβ gene (7q34) and to a lesser extent the TCRγ gene at chromosomal band 7p14 and juxtapose T-cell oncogenes next to TCR regulatory sequences leading to deregulated expression of those oncogenes. Here, we describe a new recurrent chromosomal inversion of chromosome 7, inv(7)(p15q34), in a subset of patients with T-cell acute lymphoblastic leukemia characterized by CD2 negative and CD4 positive, CD8 negative blasts. This rearrangement juxtaposes the distal part of the HOXA gene cluster on 7p15 to the TCRβ locus on 7q34. Real time quantitative PCR analysis for all HOXA genes revealed high levels of HOXA10 and HOXA11 expression in all inv(7) positive cases. This is the first report of a recurrent chromosome rearrangement targeting the HOXA gene cluster in T-cell malignancies resulting in deregulated HOXA gene expression (particularly HOXA10 and HOXA11) and is in keeping with a previous report suggesting HOXA deregulation in MLL-rearranged T- and B cell lymphoblastic leukemia as the key factor in leukaemic transformation. Finally, our observation also supports the previous suggested role of HOXA10 and HOXA11 in normal thymocyte development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 3
Figure 1
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    Article  CAS  PubMed  Google Scholar 

  2. Hwang LY, Baer RJ . The role of chromosome translocations in T cell acute leukemia. Curr Opin Immunol 1995; 7: 659–664.

    Article  CAS  PubMed  Google Scholar 

  3. Robb L, Begley CG . The SCL/TAL1 gene: roles in normal and malignant haematopoiesis. Bioessays 1997; 19: 607–613.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrando AA, Herblot S, Palomero T, Hansen M, Hoang T, Fox EA et al. Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Blood 2004; 103: 1909–1911.

    Article  CAS  PubMed  Google Scholar 

  5. Barber KE, Martineau M, Harewood L, Stewart M, Cameron E, Strefford JC et al. Amplification of the ABL gene in T-cell acute lymphoblastic leukemia. Leukemia 2004; 18: 1153–1156.

    Article  CAS  PubMed  Google Scholar 

  6. Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 2004; 36: 1084–1089.

    Article  CAS  PubMed  Google Scholar 

  7. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  8. Gesk S, Martin-Subero JI, Harder L, Luhmann B, Schlegelberger B, Calasanz MJ et al. Molecular cytogenetic detection of chromosomal breakpoints in T-cell receptor gene loci. Leukemia 2003; 17: 738–745.

    Article  CAS  PubMed  Google Scholar 

  9. Stove V, Naessens E, Stove C, Swigut T, Plum J, Verhasselt B . Signaling but not trafficking function of HIV-1 protein Nef is essential for Nef-induced defects in human intrathymic T-cell development. Blood 2003; 102: 2925–2932.

    Article  CAS  PubMed  Google Scholar 

  10. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995; 9: 1783–1786.

    CAS  PubMed  Google Scholar 

  11. Mitelman F . An international system for Human Cytogenetic Nomenclature. 1995, ISCN; S Karger, Basel.

  12. Van Limbergen H, Poppe B, Michaux L, Herens C, Brown J, Noens L et al. Identification of cytogenetic subclasses and recurring chromosomal aberrations in AML and MDS with complex karyotypes using M-FISH. Genes Chromosomes Cancer 2002; 33: 60–72.

    Article  CAS  PubMed  Google Scholar 

  13. Taghon T, Thys K, De Smedt M, Weerkamp F, Staal FJ, Plum J et al. Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development. Leukemia 2003; 17: 1157–1163.

    Article  CAS  PubMed  Google Scholar 

  14. Vandesompele J, De Paepe A, Speleman F . Elimination of primer-dimer artifacts and genomic coamplification using a two-step SYBR green I real-time RT-PCR. Anal Biochem 2002; 303: 95–98.

    Article  CAS  PubMed  Google Scholar 

  15. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3: 1–11.

    Article  Google Scholar 

  16. Thompson A, Quinn MF, Grimwade D, O'Neill CM, Ahmed MR, Grimes S et al. Global down-regulation of HOX gene expression in PML-RARalpha+acute promyelocytic leukemia identified by small-array real-time PCR. Blood 2003; 101: 1558–1565.

    Article  CAS  PubMed  Google Scholar 

  17. Xiaowei Wang BS . A PCR primer bank for quantitative gene expression analysis. Nucleic Acids Res 2003; 31: 1–8.

    Article  Google Scholar 

  18. Pattyn F, Speleman F, De Paepe A, Vandesompele J . RTPrimerDB: the real-time PCR primer and probe database. Nucleic Acids Res 2003; 31: 122–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Owens BM, Hawley RG . HOX and non-HOX homeobox genes in leukemic hematopoiesis. Stem Cells 2002; 20: 364–379.

    Article  CAS  PubMed  Google Scholar 

  20. Magli MC, Barba P, Celetti A, De Vita G, Cillo C, Boncinelli E . Coordinate regulation of HOX genes in human hematopoietic cells. Proc Natl Acad Sci USA 1991; 88: 6348–6352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Oostveen J, Bijl J, Raaphorst F, Walboomers J, Meijer C . The role of homeobox genes in normal hematopoiesis and hematological malignancies. Leukemia 1999; 13: 1675–1690.

    Article  CAS  PubMed  Google Scholar 

  22. Lawrence HJ, Largman C . Homeobox genes in normal hematopoiesis and leukemia. Blood 1992; 80: 2445–2453.

    CAS  PubMed  Google Scholar 

  23. Buske C, Humphries RK . Homeobox genes in leukemogenesis. Int J Hematol 2000; 71: 301–308.

    CAS  PubMed  Google Scholar 

  24. Takeshita K, Bollekens JA, Hijiya N, Ratajczak M, Ruddle FH, Gewirtz AM . A homeobox gene of the Antennapedia class is required for human adult erythropoiesis. Proc Natl Acad Sci USA 1993; 90: 3535–3538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu J, Zhu JQ, Zhu DX, Scharfman A, Lamblin G, Han KK . Selective inhibition of normal murine myelopoiesis ‘in vitro’ by a Hox 2.3 antisense oligodeoxynucleotide. Cell Mol Biol 1992; 38: 367–376.

    CAS  PubMed  Google Scholar 

  26. Lawrence HJ, Helgason CD, Sauvageau G, Fong S, Izon DJ, Humphries RK et al. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 1997; 89: 1922–1930.

    CAS  PubMed  Google Scholar 

  27. Izon DJ, Rozenfeld S, Fong ST, Komuves L, Largman C, Lawrence HJ . Loss of function of the homeobox gene Hoxa-9 perturbs early T-cell development and induces apoptosis in primitive thymocytes. Blood 1998; 92: 383–393.

    CAS  PubMed  Google Scholar 

  28. Buske C, Feuring-Buske M, Antonchuk J, Rosten P, Hogge DE, Eaves CJ et al. Overexpression of HOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo. Blood 2001; 97: 2286–2292.

    Article  CAS  PubMed  Google Scholar 

  29. Taghon T, Stolz F, De Smedt M, Cnockaert M, Verhasselt B, Plum J et al. HOX-A10 regulates hematopoietic lineage commitment: evidence for a monocyte-specific transcription factor. Blood 2002; 99: 1197–1204.

    Article  CAS  PubMed  Google Scholar 

  30. Sauvageau G, Thorsteinsdottir U, Hough MR, Hugo P, Lawrence HJ, Largman C et al. Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity 1997; 6: 13–22.

    Article  CAS  PubMed  Google Scholar 

  31. Bjornsson JM, Andersson E, Lundstrom P, Larsson N, Xu X, Repetowska E et al. Proliferation of primitive myeloid progenitors can be reversibly induced by HOXA10. Blood 2001; 98: 3301–3308.

    Article  CAS  PubMed  Google Scholar 

  32. Thorsteinsdottir U, Sauvageau G, Hough MR, Dragowska W, Lansdorp PM, Lawrence HJ et al. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol 1997; 17: 495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 2002; 99: 121–129.

    Article  CAS  PubMed  Google Scholar 

  34. Fujino T, Suzuki A, Ito Y, Ohyashiki K, Hatano Y, Miura I et al. Single-translocation and double-chimeric transcripts: detection of NUP98-HOXA9 in myeloid leukemias with HOXA11 or HOXA13 breaks of the chromosomal translocation t(7;11)(p15;p15). Blood 2002; 99: 1428–1433.

    Article  CAS  PubMed  Google Scholar 

  35. Ferrando AA, Armstrong SA, Neuberg DS, Sallan SE, Silverman LB, Korsmeyer SJ et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 2003; 102: 262–268.

    Article  CAS  PubMed  Google Scholar 

  36. Hatano M, Roberts CW, Minden M, Crist WM, Korsmeyer SJ . Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science 1991; 253: 79–82.

    Article  CAS  PubMed  Google Scholar 

  37. Bernard OA, Busson-LeConiat M, Ballerini P, Mauchauffe M, Della Valle V, Monni R et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001; 15: 1495–1504.

    Article  CAS  PubMed  Google Scholar 

  38. Santini S, Boore JL, Meyer A . Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res 2003; 13: 1111–1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martinez P, Amemiya CT . Genomics of the HOX gene cluster. Comp Biochem Physiol B Biochem Mol Biol 2002; 133: 571–580.

    Article  PubMed  Google Scholar 

  40. Uckun FM, Steinherz PG, Sather H, Trigg M, Arthur D, Tubergen D et al. CD2 antigen expression on leukemic cells as a predictor of event-free survival after chemotherapy for T-lineage acute lymphoblastic leukemia: a Children's Cancer Group study. Blood 1996; 88: 4288–4295.

    CAS  PubMed  Google Scholar 

  41. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen, Grants nr. G.0310.01 and G.0106.05 and GOA, Grant nr. 12051203. BC is supported by the Belgian program of Interuniversity Poles of Attraction. JV is supported by a post-doctoral grant from the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT). NVR and JC are postdoctoral researchers and BV and PV are senior clinical investigators of the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen. We are thankful to Betty Emanuel and Nurten Yigit for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Speleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speleman, F., Cauwelier, B., Dastugue, N. et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 19, 358–366 (2005). https://doi.org/10.1038/sj.leu.2403657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403657

Keywords

This article is cited by

Search

Quick links