Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Expression of AML1-ETO in human myelomonocytic cells selectively inhibits granulocytic differentiation and promotes their self-renewal

Abstract

The t(8;21) translocation is one of the most frequent translocations in acute myeloid leukaemia (AML), giving rise to the AML1-ETO fusion protein (or RUNX1-CBF2T1). This abnormality is associated with myelocytic leukaemia with dysplastic granulopoiesis. Here, we demonstrate that when expressed in a normal human (CD34+) progenitor population, AML1-ETO selectively inhibits granulocyte colony formation but not monocyte colony formation. In bulk liquid culture, we found that though AML1-ETO transiently inhibited the proliferation of CD34+ cells, it promoted long-term growth of myeloid cells for more than 80 days, suggesting that differentiation was inhibited. In support of this, cultures expressing AML1-ETO demonstrated enhanced retention of colony-forming capacity. Phenotypic examination of AML1-ETO cultures revealed a defect in granulocytic differentiation in terms of retention of CD34+ cells within the culture and delayed CD11b upregulation. Morphologically, granulocyte terminal differentiation in AML1-ETO-expressing cells was inhibited by 83±5%, giving rise to a build-up of early to intermediate granulocytes that exhibited a number of morphological features associated with t(8;21) leukaemias. In contrast, AML1-ETO had little or no effect on monocytic differentiation. Taken together, these results suggest that expression of AML1-ETO selectively inhibits the differentiation of granulocytic cells and promoted extensive self-renewal, supporting a causal role for t(8;21) translocations in leukaemogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rabbitts TH . Chromosomal translocations in human cancer. Nature 1994; 372: 143–149.

    Article  CAS  Google Scholar 

  2. Friedman AD . Leukemogenesis by CBF oncoproteins. Leukemia 1999; 13: 1932–1942.

    Article  CAS  Google Scholar 

  3. Arber DA, Slovak ML, Popplewell L, Bedell V, Ikle D, Rowley JD . Therapy-related acute myeloid leukemia/myelodysplasia with balanced 21q22 translocations. Am J Clin Pathol 2002; 117: 306–313.

    Article  Google Scholar 

  4. Downing JR . The core-binding factor leukemias: lessons learned from murine models. Curr Opin Genet Dev 2003; 13: 48–54.

    Article  CAS  Google Scholar 

  5. Sakakura C, Yamaguchi-Iwai Y, Satake M, Bae SC, Takahashi A, Ogawa E et al. Growth inhibition and induction of differentiation of t(8;21) acute myeloid leukemia cells by the DNA-binding domain of PEBP2 and the AML1/MTG8(ETO)-specific antisense oligonucleotide. Proc Natl Acad Sci USA 1994; 91: 11723–11727.

    Article  CAS  Google Scholar 

  6. Okuda T, Cai Z, Yang S, Lenny N, Lyu CJ, van Deursen JM et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 1998; 91: 3134–3143.

    CAS  Google Scholar 

  7. Yergeau DA, Hetherington CJ, Wang Q, Zhang P, Sharpe AH, Binder M et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet 1997; 15: 303–306.

    Article  CAS  Google Scholar 

  8. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84: 321–330.

    Article  CAS  Google Scholar 

  9. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . Disruption of the CBFα2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 1996; 93: 3444–3449.

    Article  CAS  Google Scholar 

  10. Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeadon JE, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeliod leukemia. Cancer Cell 2002; 1: 63–74.

    Article  CAS  Google Scholar 

  11. Rhoades KL, Hetherington CJ, Harakawa N, Yergeau DA, Zhou L, Liu LQ et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 2000; 96: 2108–2115.

    CAS  PubMed  Google Scholar 

  12. de Guzman CG, Warren AJ, Zhang Z, Gartland L, Erickson P, Drabkin H et al. Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol 2002; 22: 5506–5517.

    Article  CAS  Google Scholar 

  13. Mulloy JC, Cammenga J, MacKenzie KL, Berguido FJ, Moore MA, Nimer SD . The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood 2002; 99: 15–23.

    Article  CAS  Google Scholar 

  14. Tonks A, Pearn L, Tonks AJ, Pearce L, Hoy T, Phillips S et al. The AML1-ETO fusion gene promotes extensive self-renewal of human primary erythroid cells. Blood 2003; 101: 624–632.

    Article  CAS  Google Scholar 

  15. Grignani F, Kinsella T, Mencarelli A, Valtieri M, Riganelli D, Grignani F et al. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res 1998; 58: 14–19.

    CAS  PubMed  Google Scholar 

  16. Olweus J, Thompson PA, Lundjohansen F . Granulocytic and monocytic differentiation of CD34(hi) cells is associated with distinct changes in the expression of the PU.1-regulated molecules, CD64 and macrophage-colony-stimulating factor- receptor. Blood 1996; 88: 3741–3754.

    CAS  PubMed  Google Scholar 

  17. Rhoades KL, Hetherington CJ, Rowley JD, Hiebert SW, Nucifora G, Tenen DG et al. Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc Natl Acad Sci USA 1996; 93: 11895–11900.

    Article  CAS  Google Scholar 

  18. Follows GA, Tagoh H, Lefevre P, Hodge D, Morgan GJ, Bonifer C . Epigenetic consequences of AML1-ETO action at the human c-FMS locus. EMBO J 2003; 22: 2798–2809.

    Article  CAS  Google Scholar 

  19. Kita K, Nakase K, Miwa H, Masuya M, Nishii K, Morita N et al. Phenotypical characteristics of acute myelocytic leukemia associated with the t(8;21)(q22;q22) chromosomal abnormality: frequent expression of immature B-cell antigen CD19 together with stem cell antigen CD34. Blood 1992; 80: 470–477.

    CAS  PubMed  Google Scholar 

  20. Hurwitz CA, Raimondi SC, Head D, Krance R, Mirro Jr J, Kalwinsky DK et al. Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children. Blood 1992; 80: 3182–3188.

    CAS  Google Scholar 

  21. Burel SA, Harakawa N, Zhou L, Pabst T, Tenen DG, Zhang DE . Dichotomy of AML1-ETO functions: growth arrest versus block of differentiation. Mol Cell Biol 2001; 21: 5577–5590.

    Article  CAS  Google Scholar 

  22. Schwieger M, Lohler J, Friel J, Scheller M, Horak I, Stocking C . AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 2002; 196: 1227–1240.

    Article  CAS  Google Scholar 

  23. Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 2001; 7: 444–451.

    Article  CAS  Google Scholar 

  24. Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG . Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA 1997; 94: 569–574.

    Article  CAS  Google Scholar 

  25. Friedman AD . Transcriptional regulation of granulocyte and monocyte development. Oncogene 2002; 21: 3377–3390.

    Article  CAS  Google Scholar 

  26. Radomska HS, Huettner CS, Zhang P, Cheng T, Scadden DT, Tenen DG . CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol Cell Biol 1998; 18: 4301–4314.

    Article  CAS  Google Scholar 

  27. Haferlach T, Bennett JM, Loffler H, Gassmann W, Andersen JW, Tuzuner N et al. Acute myeloid leukemia with translocation (8;21). Cytomorphology, dysplasia and prognostic factors in 41 cases. AML Cooperative Group and ECOG. Leuk Lymphoma 1996; 23: 227–234.

    Article  CAS  Google Scholar 

  28. Taj AS, Ross FM, Vickers M, Choudhury DN, Harvey JF, Barber JC et al. t(8;21) myelodysplasia, an early presentation of M2 AML. Br J Haematol 1995; 89: 890–892.

    Article  CAS  Google Scholar 

  29. Passegue E, Jamieson CH, Ailles LE, Weissman IL . Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 2003; 100 (Suppl. 1): 11842–11849.

    Article  CAS  Google Scholar 

  30. Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001; 98: 10398–10403.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J Downing, MD (St Jude Children's Research Hospital, TN) for providing the AML1-ETO cDNA and for his support in preparing the manuscript. This work was supported by the Leukaemia Research Fund of Great Britain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Tonks.

Additional information

All work was performed at the Department of Haematology, UWCM, Cardiff, UK

Supplementary Information

Supplementary Information accompanies the paper on Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonks, A., Tonks, A., Pearn, L. et al. Expression of AML1-ETO in human myelomonocytic cells selectively inhibits granulocytic differentiation and promotes their self-renewal. Leukemia 18, 1238–1245 (2004). https://doi.org/10.1038/sj.leu.2403396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403396

Keywords

This article is cited by

Search

Quick links