Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia

Abstract

The role of internal tandem duplication of fms-like tyrosine kinase 3 (FLT3/ITD), mutations at tyrosine kinase domain (FLT3/TKD) and N-ras mutations in the transformation of myelodysplastic syndrome (MDS) to AML was investigated in 82 MDS patients who later progressed to AML; 70 of them had paired marrow samples at diagnosis of MDS and AML available for comparative analysis. Five of the 82 patients had FLT3/ITD at presentation. Of the 70 paired samples, seven patients acquired FLT3/ITD during AML evolution. The incidence of FLT3/ITD at diagnosis of MDS was significantly lower than that at AML transformation (3/70 vs 10/70, P<0.001). FLT3/ITD(+) patients progressed to AML more rapidly than FLT3/ITD(−) patients (2.5±0.5 vs 11.9±1.5 months, P=0.114). FLT3/ITD(+) patients had a significantly shorter survival than FLT3/ITD(−) patients (5.6±1.3 vs 18.0±1.7 months, P=0.0008). After AML transformation, FLT3/ITD was also associated with an adverse prognosis. One patient had FLT3/TKD mutation (D835Y) at both MDS and AML stages. Additional three acquired FLT3/TKD (one each with D835 H, D835F and I836S) at AML transformation. Five of the 70 matched samples had N-ras mutation at diagnosis of MDS compared to 15 at AML transformation (P<0.001), one lost and 11 gained N-ras mutations at AML progression. Coexistence of FLT3/TKD and N-ras mutations was found in two AML samples. N-ras mutations had no prognostic impact either at the MDS or AML stage. Our results show that one-third of MDS patients acquire activating mutations of FLT3 or N-ras gene during AML evolution and FLT3/ITD predicts a poor outcome in MDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Mufti GJ, Galton DA . Myelodysplastic syndromes: natural history and features of prognostic importance. Clin Haematol 1986; 15: 953–971.

    CAS  PubMed  Google Scholar 

  2. Raskind WH, Steinmann L, Najfeld V . Clonal development of myeloproliferative disorders: clues to hematopoietic differentiation and multistep pathogenesis of cancer. Leukemia 1998; 12: 108–116.

    Article  CAS  PubMed  Google Scholar 

  3. Lai JL, Preudhomme C, Zandecki M, Flactif M, Vanrumbeke M, Lepelley P et al. Myelodysplastic syndromes and acute myeloid leukemia with 17p deletion. An entity characterized by specific dysgranulopoiesis and a high incidence of P53 mutations. Leukemia 1995; 9: 370–381.

    CAS  PubMed  Google Scholar 

  4. Kaneko H, Misawa S, Horiike S, Nakai H, Kashima K . TP53 mutations emerge at early phase of myelodysplastic syndrome and are associated with complex chromosomal abnormalities. Blood 1995; 85: 2189–2193.

    CAS  PubMed  Google Scholar 

  5. Quesnel B, Guillerm G, Vereecque R, Wattel E, Preudhomme C, Bauters F et al. Methylation of the p15INK4b gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 1998; 91: 2985–2990.

    CAS  PubMed  Google Scholar 

  6. Beaupre DM, Kurzrock R . RAS and leukemia: from basic mechanisms to gene-directed therapy. J Clin Oncol 1999; 17: 1071–1079.

    Article  CAS  PubMed  Google Scholar 

  7. Byrne JL, Marshall CJ . The molecular pathophysiology of myeloid leukaemias: Ras revisited. Br J Haematol 1998; 100: 256–264.

    Article  CAS  PubMed  Google Scholar 

  8. Yunis JJ, Boot AJ, Mayer MG, Bos JL . Mechanisms of ras mutation in myelodysplastic syndrome. Oncogene 1989; 4: 609–614.

    CAS  PubMed  Google Scholar 

  9. Bar-Eli M, Ahuja H, Gonzalez-Cadavid N, Foti A, Cline MJ . Analysis of N-RAS exon-1 mutations in myelodysplastic syndromes by polymerase chain reaction and direct sequencing. Blood 1989; 73: 281–283.

    CAS  PubMed  Google Scholar 

  10. Nakagawa T, Saitoh S, Imoto S, Itoh M, Tsutsumi M, Hikiji K et al. Multiple point mutation of N-ras and K-ras oncogenes in myelodysplastic syndrome and acute myelogenous leukemia. Oncology 1992; 49: 114–122.

    Article  CAS  PubMed  Google Scholar 

  11. Paquette RL, Landaw EM, Pierre RV, Kahan J, Lubbert M, Lazcano O et al. N-ras mutations are associated with poor prognosis and increased risk of leukemia in myelodysplastic syndrome. Blood 1993; 82: 590–599.

    CAS  PubMed  Google Scholar 

  12. Tien HF, Wang CH, Chuang SM, Chow JM, Lee FY, Liu MC et al. Cytogenetic studies, ras mutation, and clinical characteristics in primary myelodysplastic syndrome. A study on 68 Chinese patients in Taiwan. Cancer Genet Cytogenet 1994; 74: 40–49.

    Article  CAS  PubMed  Google Scholar 

  13. Horiike S, Misawa S, Nakai H, Kaneko H, Yokota S, Taniwaki M et al. N-ras mutation and karyotypic evolution are closely associated with leukemic transformation in myelodysplastic syndrome. Leukemia 1994; 8: 1331–1336.

    CAS  PubMed  Google Scholar 

  14. Santon A, Arranz E, Robledo M, Prieto E, Benitez J . N-Ras mutations: incidence and clinical relevance in myelodysplastic syndrome and acute myelogenous leukemia. Am J Hematol 1995; 50: 315–316.

    Article  CAS  PubMed  Google Scholar 

  15. Mitani K, Hangaishi A, Imamura N, Miyagawa K, Ogawa S, Kanda Y et al. No concomitant occurrence of the N-ras and p53 gene mutations in myelodysplastic syndromes. Leukemia 1997; 11: 863–865.

    Article  CAS  PubMed  Google Scholar 

  16. Constantinidou M, Chalevelakis G, Economopoulos T, Koffa M, Liloglou T, Anastassiou C et al. Codon 12 ras mutations in patients with myelodysplastic syndrome: incidence and prognostic value. Ann Hematol 1997; 74: 11–14.

    Article  CAS  PubMed  Google Scholar 

  17. Padua RA, Guinn BA, Al-Sabah AI, Smith M, Taylor C, Pettersson T et al. RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up. Leukemia 1998; 12: 887–892.

    Article  CAS  PubMed  Google Scholar 

  18. de Souza Fernandez T, Menezes de Souza J, Macedo Silva ML, Tabak D, Abdelhay E . Correlation of N-ras point mutations with specific chromosomal abnormalities in primary myelodysplastic syndrome. Leukemia Res 1998; 22: 125–134.

    Article  CAS  Google Scholar 

  19. Plata E, Viniou N, Abazis D, Konstantopoulos K, Troungos C, Vaiopoulos G et al. Cytogenetic analysis and RAS mutations in primary myelodysplastic syndromes. Cancer Genet Cytogenet 1999; 111: 124–129.

    Article  CAS  PubMed  Google Scholar 

  20. Rosnet O, Stephenson D, Mattei MG, Marchetto S, Shibuya M, Chapman VM et al. Close physical linkage of the FLT1 and FLT3 genes on chromosome 13 in man and chromosome 5 in mouse. Oncogene 1993; 8: 173–179.

    CAS  PubMed  Google Scholar 

  21. Rosnet O, Schiff C, Pebusque MJ, Marchetto S, Tonnelle C, Toiron Y et al. Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood 1993; 82: 1110–1119.

    CAS  PubMed  Google Scholar 

  22. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  23. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080.

    CAS  PubMed  Google Scholar 

  24. Rombouts WJC, Blokland I, Lowenberg B, Ploemacher RE . Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene. Leukemia 2000; 14: 675–683.

    Article  CAS  PubMed  Google Scholar 

  25. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  26. Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a Cancer and Leukemia Group B study. Cancer Res 2001; 61: 7233–7239.

    CAS  PubMed  Google Scholar 

  27. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  29. Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT . Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol 2001; 113: 983–988.

    Article  CAS  PubMed  Google Scholar 

  30. Horiike S, Yokota S, Nakao M, Iwai T, Sasai Y, Kaneko H et al. Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia 1997; 11: 1442–1446.

    Article  CAS  PubMed  Google Scholar 

  31. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66.

    Article  CAS  PubMed  Google Scholar 

  32. Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998; 12: 1333–1337.

    Article  CAS  PubMed  Google Scholar 

  33. Fenski R, Flesch K, Serve S, Mizuki M, Oelmann E, Kratz-Albers K et al. Constitutive activation of FLT3 in acute myeloid leukaemia and its consequences for growth of 32D cells. Br J Haematol 2000; 108: 322–330.

    Article  CAS  PubMed  Google Scholar 

  34. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Muller C et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000; 96: 3907–3914.

    CAS  PubMed  Google Scholar 

  35. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 2000; 19: 624–631.

    Article  CAS  PubMed  Google Scholar 

  36. Tse KF, Mukherjee G, Small D . Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia 2000; 14: 1766–1776.

    Article  CAS  PubMed  Google Scholar 

  37. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 1982; 51: 189–199.

    Article  CAS  PubMed  Google Scholar 

  38. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposed revised criteria for the classification of acute myeloid leukemia: a report of the French–American–British Cooperative Group. Ann Intern Med 1985; 103: 620–625.

    Article  CAS  PubMed  Google Scholar 

  39. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-M0). Br J Haematol 1991; 78: 325–329.

    Article  CAS  PubMed  Google Scholar 

  40. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997; 89: 2079–2088.

    CAS  PubMed  Google Scholar 

  41. Fey MF, Pilkington SP, Summers C, Wainscoat JS . Molecular diagnosis of haematological disorders using DNA from stored bone marrow slides. Br J Haematol 1987; 67: 489–492.

    Article  CAS  PubMed  Google Scholar 

  42. Shih LY, Huang CF, Wu JH, Lin TL, Dunn P, Wang PN et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood. 2002; 100: 2387–2392.

    Article  CAS  PubMed  Google Scholar 

  43. Liang DC, Shih LY, Hung IJ, Yang CP, Chen SH, Jaing TH et al. FLT3-TKD mutation in childhood acute myeloid leukemia. Leukemia 2003; 17: 883–886.

    Article  CAS  PubMed  Google Scholar 

  44. Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC . Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 2003; 100: 2393–2398.

    Article  Google Scholar 

  45. van Kamp H, de Pijper C, Verlaan-de Vries M, Bos JL, Leeksma CH, Kerkhofs H et al. Longitudinal analysis of point mutations of the N-ras proto-oncogene in patients with myelodysplasia using archived blood smears. Blood 1992; 79: 1266–1270.

    CAS  PubMed  Google Scholar 

  46. Gilliland DG, Griffin JD . The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr Ching-Tai Lee, Ms Chang-Liang Lai, Ms Meng-Chu Chou, Ms Chiu-Shia Shu and Ms Siew-Hoon Teoh for technical assistance, and Ms Yu-Feng Wang for secretarial assistance. This work was supported by Grants NSC89-2314-B182-120, NSC90-2314-B-182-086 and NSC91-2314-B-182-032 from the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L-Y Shih.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, LY., Huang, CF., Wang, PN. et al. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 18, 466–475 (2004). https://doi.org/10.1038/sj.leu.2403274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403274

Keywords

This article is cited by

Search

Quick links