Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration

Abstract

Transplantation of immunodeficient mice with human hematopoietic cells has greatly facilitated studies of the earliest stages of human hematopoiesis. These include demonstration of the ability of injected ‘human-specific’ hematopoietic growth factors to enhance the production of human cells at multiple levels of differentiation. In contrast, the effects of continuous exposure to such molecules have not been well investigated. Here, we show that nonobese diabetic severe combined immunodeficiency mice genetically engineered to produce ng/ml serum levels of human interleukin-3 (IL-3), granulocyte/macrophage-stimulating factor (GM-CSF) and Steel factor (SF) display a complex phenotype when transplanted with primitive human bone marrow (BM) or fetal liver cells. This phenotype is characterized by an enhancement of terminal human myelopoiesis and a matched suppression of terminal human erythropoiesis, with a slight reduction in human B-lymphopoiesis in the BM of the engrafted mice. Human clonogenic progenitors are more prevalent in the blood of the transplanted growth factor-producing mice and this is accompanied by a very marked reduction of more primitive human cells in the BM. Our findings suggest that long-term exposure of primitive human hematopoietic cells to elevated levels of human IL-3, GM-CSF and SF in vivo may deleteriously affect the stem cell compartment, while expanding terminal myelopoiesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Wang JCY, Dorrell C, Ito CY, Inamitsu T, Guenechea G, Gan OI et al. Normal and leukemic human stem cells assayed in immune-deficient mice. In: Zon LI (ed) Hematopoiesis A Developmental Approach. New York: Oxford University Press, 2001, pp 99–118.

    Google Scholar 

  2. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995; 154: 180–191.

    CAS  PubMed  Google Scholar 

  3. Cashman JD, Lapidot T, Wang JCY, Doedens M, Shultz LD, Lansdorp P et al. Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice. Blood 1997; 89: 4307–4316.

    CAS  PubMed  Google Scholar 

  4. Cashman JD, Eaves CJ . Human growth factor-enhanced regeneration of transplantable human hematopoietic stem cells in nonobese diabetic/severe combined immunodeficient mice. Blood 1999; 93: 481–487.

    CAS  PubMed  Google Scholar 

  5. Van der Loo JCM, Hanenberg H, Cooper RJ, Luo F-Y, Lazaridis EN, Williams DA . Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization of human peripheral blood stem cells. Blood 1998; 92: 2556–2570.

    CAS  PubMed  Google Scholar 

  6. Bonnet D, Bhatia M, Wang JCY, Kapp U, Dick JE . Cytokine treatment of accessory cells are required to initiate engraftment of purified primitive human hematopoietic cells transplanted at limiting doses into NOD/SCID mice. Bone Marrow Transplant 1999; 23: 203–209.

    Article  CAS  PubMed  Google Scholar 

  7. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283: 845–848.

    Article  CAS  PubMed  Google Scholar 

  8. Lowenberg B, Touw IP . Hematopoietic growth factors and their receptors in acute leukemia. Blood 1993; 81: 281–292.

    CAS  PubMed  Google Scholar 

  9. Jiang X, Lopez A, Holyoake T, Eaves A, Eaves C . Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc Natl Acad Sci USA 1999; 96: 12804–12809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Croizat H . Circulating cytokines in sickle cell patients during steady state. Br J Haematol 1994; 87: 592–597.

    Article  CAS  PubMed  Google Scholar 

  11. Croizat H, Nagel RL . Circulating cytokines response and the level of erythropoiesis in sickle cell anemia. Am J Hematol 1999; 60: 105–115.

    Article  CAS  PubMed  Google Scholar 

  12. Croizat H, Ponchio L, Nicolini FE, Nagel RL, Eaves CJ . Primitive haematopoietic progenitors in the blood of patients with sickle cell disease appear to be endogenously mobilized. Br J Haematol 2000; 111: 491–497.

    Article  CAS  PubMed  Google Scholar 

  13. Lamming CE, Augustin L, Blackstad M, Lund TC, Hebbel RP, Verfaillie CM . Spontaneous circulation of myeloid-lymphoid-initiating cells and SCID-repopulating cells in sickle cell crisis. J Clin Invest 2003; 111: 811–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zandstra PW, Conneally E, Petzer AL, Piret JM, Eaves CJ . Cytokine manipulation of primitive human hematopoietic cell self-renewal. Proc Natl Acad Sci USA 1997; 94: 4698–4703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yonemura Y, Ku H, Hirayama F, Souza LM, Ogawa M . Interleukin 3 or interleukin 1 abrogates the reconstituting ability of hematopoietic stem cells. Proc Natl Acad Sci USA 1996; 93: 4040–4044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feuring-Buske M, Gerhard B, Cashman J, Humphries RK, Eaves CJ, Hogge DE . Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors. Leukemia 2003; 17: 760–763.

    Article  CAS  PubMed  Google Scholar 

  17. Nishikawa S-I, Nishikawa S, Kawamoto H, Yoshida H, Kizumoto M, Kataoka H et al. In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 1998; 8: 761–769.

    Article  CAS  PubMed  Google Scholar 

  18. Boggs DR . The total marrow mass of the mouse: a simplified method of measurement. Am J Hematol 1984; 16: 277–286.

    Article  CAS  PubMed  Google Scholar 

  19. Hogge DE, Lansdorp PM, Reid D, Gerhard B, Eaves CJ . Enhanced detection, maintenance and differentiation of primitive human hematopoietic cells in cultures containing murine fibroblasts engineered to produce human Steel factor, interleukin-3 and granulocyte colony-stimulating factor. Blood 1996; 88: 3765–3773.

    CAS  PubMed  Google Scholar 

  20. Nicolini FE, Holyoake TL, Cashman JD, Chu PPY, Lambie K, Eaves CJ . Unique differentiation programs of human fetal liver stem cells revealed both in vitro and in vivo in NOD/SCID mice. Blood 1999; 94: 2686–2695.

    CAS  PubMed  Google Scholar 

  21. Szilvassy SJ, Humphries RK, Lansdorp PM, Eaves AC, Eaves CJ . Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci USA 1990; 87: 8736–8740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nicola NA . Hemopoietic growth factors and their interactions with specific receptors. J Cell Physiol 1987: Suppl 5: 9–14.

  23. Martin FH, Suggs SV, Langley KE, Lu HS, Ting J, Okino KH et al. Primary structure and functional expression of rat and human stem cell factor DNAs. Cell 1990; 63: 203–211.

    Article  CAS  PubMed  Google Scholar 

  24. Holyoake TL, Nicolini FE, Eaves CJ . Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. Exp Hematol 1999; 27: 1418–1427.

    Article  CAS  PubMed  Google Scholar 

  25. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE . Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992; 255: 1137–1141.

    Article  CAS  PubMed  Google Scholar 

  26. Cashman J, Bockhold K, Hogge DE, Eaves AC, Eaves CJ . Sustained proliferation, multi-lineage differentiation and maintenance of primitive human haematopoietic cells in NOD/SCID mice transplanted with human cord blood. Br J Haematol 1997; 97: 1026–1036.

    Article  Google Scholar 

  27. Kyoizumi S, Murray LJ, Namikawa R . Preclinical analysis of cytokine therapy in the SCID-hu mouse. Blood 1993; 81: 1479–1488.

    CAS  PubMed  Google Scholar 

  28. Kapp U, Bhatia M, Bonnet D, Murdoch B, Dick JE . Treatment of non-obese diabetic (NOD)/severe-combined immunodeficient mice (SCID) with flt3 ligand and interleukin-7 impairs the B-lineage commitment of repopulating cells after transplantation of human hematopoietic cells. Blood 1998; 92: 2024–2031.

    CAS  PubMed  Google Scholar 

  29. Bock TA, Orlic D, Dunbar CE, Broxmeyer HE, Bodine DM . Improved engraftment of human hematopoietic cells in severe combined immunodeficient (SCID) mice carrying human cytokine transgenes. J Exp Med 1995; 182: 2037–2043.

    Article  CAS  PubMed  Google Scholar 

  30. Metcalf D . Control of granulocytes and macrophages: molecular, cellular, and clinical aspects. Science 1991; 254: 529–533.

    Article  CAS  PubMed  Google Scholar 

  31. To LB, Haylock DN, Simmons PJ, Juttner CA . The biology and clinical uses of blood stem cells. Blood 1997; 89: 2233–2258.

    CAS  PubMed  Google Scholar 

  32. Thomas J, Liu F, Link DC . Mechanisms of mobilization of hematopoietic progenitors with granulocyte colony-stimulating factor. Curr Opin Hematol 2002; 9: 183–189.

    Article  PubMed  Google Scholar 

  33. Matsunaga T, Hirayama F, Yonemura Y, Murray R, Ogawa M . Negative regulation by interleukin-3 (IL-3) of mouse early B-cell progenitors and stem cells in culture: transduction of the negative signals by βc and βIL-3 proteins of IL-3 receptor and absence of negative regulation by granulocyte–macrophage colony-stimulating factor. Blood 1998; 92: 901–907.

    CAS  PubMed  Google Scholar 

  34. Wong PMC, Chung S, Dunbar CE, Bodine DM, Ruscetti S, Nienhuis AW . Retrovirus-mediated transfer and expression of the interleukin-3 gene in mouse hematopoietic cells result in a myeloproliferative disorder. Mol Cell Biol 1989; 9: 798–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang JM, Metcalf D, Lang RA, Gonda TJ, Johnson GR . Nonneoplastic hematopoietic myeloproliferative syndrome induced by dysregulated multi-CSF (IL-3) expression. Blood 1989; 73: 1487–1497.

    CAS  PubMed  Google Scholar 

  36. Chang JM, Metcalf D, Gonda TJ, Johnson GR . Long-term exposure to retrovirally expressed granulocyte-colony-stimulating factor induces a nonneoplastic granulocytic and progenitor cell hyperplasia without tissue damage in mice. J Clin Invest 1989; 84: 1488–1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnson GR, Gonda TJ, Metcalf D, Hariharan IK, Cory S . A lethal myeloproliferative syndrome in mice transplanted with bone marrow cells infected with a retrovirus expressing granulocyte–macrophage colony stimulating factor. EMBO J 1989; 8: 441–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the flow cytometry facility and the Stem Cell Assay Service for expert technical assistance and Rozmina Premji for help in preparing the manuscript. We are also grateful to Véronique Maguer-Satta and Allen Eaves for helpful discussions and Peter Lansdorp (Terry Fox Laboratory), Cangene, Novartis, and StemCell Technologies for reagents. This work was supported by grants from the NIH (POI HL 55435), the Stem Cell Network and the National Cancer Institute of Canada (NCIC) with funds from the Terry Fox Run.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J Eaves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolini, F., Cashman, J., Hogge, D. et al. NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia 18, 341–347 (2004). https://doi.org/10.1038/sj.leu.2403222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403222

Keywords

This article is cited by

Search

Quick links