Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Molecular Targets For Therapy (MTT)
  • Published:

Molecular Targets For Therapy (MTT)

Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias

Abstract

The phosphatidylinositol 3-kinase (PI3K)/AKT protein kinase pathway is involved in cell growth, proliferation, and apoptosis. The functional activation of PI3K/AKT provides survival signals and blockade of this pathway may facilitate cell death. Downstream targets of PI3K-AKT include the proapoptotic protein BAD, caspase-9, NF-κB, and Forkhead. We have previously reported that BAD is constitutively phosphorylated in primary acute myeloid leukemia (AML) cells, a post-transcriptional modification, which inactivates its proapoptotic function. In this study, we tested the hypothesis that the inhibition of PI3K by LY294002 results in the dephosphorylation of AKT and BAD, and thus promote leukemia cell apoptosis. We investigated the effects of LY294002 in megakaryocytic leukemia-derived MO7E cells, primary AML and normal bone marrow progenitor cells. In MO7E cells, LY294002 reduced AKT kinase activity, induced dephosphorylation of AKT and BAD, and increased apoptosis. Concomitant inhibition of mitogen-activated protein kinase signaling or combination with all-trans retinoic acid further enhanced apoptosis of leukemic cells. In primary AML samples, clonogenic cell growth was significantly reduced. Normal hematopoietic progenitors were less affected, suggesting preferential targeting of leukemia cells. In conclusion, the data suggest that the inhibition of the PI3K/AKT signaling pathway restores apoptosis in AML and may be explored as a novel target for molecular therapeutics in AML.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  1. Stein RC, Waterfield MD . PI3-kinase inhibition: a target for drug development? Mol Med Today 2000; 6: 347–357.

    CAS  PubMed  Google Scholar 

  2. Vivanco I, Sawyers CL . The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489–501.

    CAS  PubMed  Google Scholar 

  3. Coffer PJ, Jin J, Woodgett JR . Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 1998; 335: 1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Staal SP, Hartley JW, Rowe WP . Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci USA 1977; 74: 3065–3067.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Franke TF, Kaplan DR, Cantley LC, Toker A . Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 1997; 275: 665–668.

    CAS  PubMed  Google Scholar 

  6. Klippel A, Kavanaugh WM, Pot D, Williams LT . A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol 1997; 17: 338–344.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Staal SP . Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA 1987; 84: 5034–5037.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB . NF-kappaB activation by tumour necrosis factor requires the Akt serine–threonine kinase. Nature 1999; 401: 82–85.

    CAS  PubMed  Google Scholar 

  9. Romashkova JA, Makarov SS . NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 1999; 401: 86–90.

    CAS  PubMed  Google Scholar 

  10. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    CAS  PubMed  Google Scholar 

  11. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G . Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997; 278: 687–689.

    CAS  PubMed  Google Scholar 

  12. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318–1321.

    CAS  PubMed  Google Scholar 

  13. Kops GJ, de Ruiter ND, Vries-Smits AM, Powell DR, Bos JL, Burgering BM . Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 1999; 398: 630–634.

    CAS  PubMed  Google Scholar 

  14. Nakae J, Park BC, Accili D . Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J Biol Chem 1999; 274: 15982–15985.

    CAS  PubMed  Google Scholar 

  15. Tang ED, Nunez G, Barr FG, Guan KL . Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 1999; 274: 16741–16746.

    CAS  PubMed  Google Scholar 

  16. Guo S, Rena G, Cichy S, He X, Cohen P, Unterman T . Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 1999; 274: 17184–17192.

    CAS  PubMed  Google Scholar 

  17. Kops GJ, Burgering BM . Forkhead transcription factors: new insights into protein kinase B (c-akt) signaling. J Mol Med 1999; 77: 656–665.

    CAS  PubMed  Google Scholar 

  18. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–868.

    CAS  PubMed  Google Scholar 

  19. Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol 2000; 20: 9138–9148.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Blume-Jensen P, Janknecht R, Hunter T . The kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136. Curr Biol 1998; 8: 779–782.

    CAS  PubMed  Google Scholar 

  21. Pastorino JG, Tafani M, Farber JL . Tumor necrosis factor induces phosphorylation and translocation of BAD through a phosphatidylinositide-3-OH kinase-dependent pathway. J Biol Chem 1999; 274: 19411–19416.

    CAS  PubMed  Google Scholar 

  22. Oltvai ZN, Milliman CL, Korsmeyer SJ . Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programmed cell death. Cell 1993; 74: 609–619.

    Article  CAS  PubMed  Google Scholar 

  23. Kelekar A, Chang BS, Harlan JE, Fesik SW, Thompson CB . Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-XL. Mol Cell Biol 1997; 17: 7040–7046.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ottilie S, Diaz JL, Horne W, Chang J, Wang Y, Wilson G et al. Dimerization properties of human BAD. Identification of a BH-3 domain and analysis of its binding to mutant BCL-2 and BCL-XL proteins. J Biol Chem 1997; 272: 30866–30872.

    CAS  PubMed  Google Scholar 

  25. Scheid MP, Schubert KM, Duronio V . Regulation of bad phosphorylation and association with Bcl-x(L) by the MAPK/Erk kinase. J Biol Chem 1999; 274: 31108–31113.

    CAS  PubMed  Google Scholar 

  26. Fang X, Yu S, Eder A, Mao M, Bast Jr RC, Boyd D et al. Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway. Oncogene 1999; 18: 6635–6640.

    CAS  PubMed  Google Scholar 

  27. Andreeff M, Jiang S, Zhang X, Konopleva M, Estrov Z, Snell VE et al. Expression of Bcl-2-related genes in normal and AML progenitors: changes induced by chemotherapy and retinoic acid. Leukemia 1999; 13: 1881–1892.

    Article  CAS  PubMed  Google Scholar 

  28. Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL . The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 1998; 95: 15587–15591.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM et al. Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA 1999; 96: 2110–2115.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cantley LC, Neel BG . New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 1999; 96: 4240–4245.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA 1999; 96: 6199–6204.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Taylor V, Wong M, Brandts C, Reilly L, Dean NM, Cowsert LM et al. 5′ phospholipid phosphatase SHIP-2 causes protein kinase B inactivation and cell cycle arrest in glioblastoma cells. Mol Cell Biol 2000; 20: 6860–6871.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Muraille E, Pesesse X, Kuntz C, Erneux C . Distribution of the src-homology-2-domain-containing inositol 5-phosphatase SHIP-2 in both non-haemopoietic and haemopoietic cells and possible involvement in SHIP-2 in negative signaling of B-cells. Biochem J 1999; 342: 697–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li J, Yen C, Iaw D, Podsypanina K, Bose S, Wang SI et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943–1947.

    CAS  PubMed  Google Scholar 

  35. Dahia PL, Aquiar RC, Alberta J, Kum JB, Caron S, Sill H et al. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanism in haematological malignancies. Hum Mol Genet 1999; 8: 185–193.

    CAS  PubMed  Google Scholar 

  36. Sakai A, Thieblemont C, Wellmann A, Jaffe ES, Raffeld M . PTEN gene alterations in lymphoid neoplasms. Blood 1998; 92: 3410–3415.

    CAS  PubMed  Google Scholar 

  37. Dierov J, Xu Q, Dierova R, Carroll M . TEL/platelet-derived growth factor receptor beta activates phosphatidylinositol 3 (PI3) kinase and requires PI3 kinase to regulate the cell cycle. Blood 2002; 99: 1758–1765.

    CAS  PubMed  Google Scholar 

  38. Griffin JD . Phosphatidyl inositol signaling by BCR/ABL: opportunities for drug development. Cancer Chemother Pharmacol 2001; 48: S11–S16.

    CAS  PubMed  Google Scholar 

  39. Wickremasinghe RG, Ganeshaguru K, Jones DT, Lindsay C, Spanswick VJ, Hartley JA et al. Autologous plasma activates Akt/protein kinase B and enhances basal survival and resistance to DNA damage-induced apoptosis in B-chronic lymphocytic leukaemia cells. Br J Haematol 2001; 114: 608–615.

    CAS  PubMed  Google Scholar 

  40. Datta K, Bellacosa A, Chan TO, Tsichlis PN . Akt is a direct target of the phosphatidylinositol 3-kinase. Activation by growth factors, v-src and v-Ha-ras, in Sf9 and mammalian cells. J Biol Chem 1996; 271: 30835–30839.

    CAS  PubMed  Google Scholar 

  41. Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 1997; 385: 544–548.

    CAS  PubMed  Google Scholar 

  42. Goswami R, Kilkus J, Dawson SA, Dawson G . Overexpression of Akt (protein kinase B) confers protection against apoptosis and prevents formation of ceramide in response to pro-apoptotic stimuli. J Neurosci Res 1999; 57: 884–893.

    CAS  PubMed  Google Scholar 

  43. Hu L, Zaloudek C, Mills GB, Gray J, Jaffe RB . In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002). Clin Cancer Res 2000; 6: 880–886.

    CAS  PubMed  Google Scholar 

  44. Marushige K, Marushige Y . Changes in the mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling associated with the induction of apoptosis. Anticancer Res 1999; 19: 3865–3871.

    CAS  PubMed  Google Scholar 

  45. Costoya JA, Finidori J, Moutoussamy S, Searis R, Devesa J, Arce VM . Activation of growth hormone receptor delivers an antiapoptotic signal: evidence for a role of Akt in this pathway. Endocrinology 1999; 140: 5937–5943.

    CAS  PubMed  Google Scholar 

  46. Greenberger JS, Sakakeeny MA, Humphries RK, Eaves CJ, Eckner RJ . Demonstration of permanent factor-dependent multipotential (erythroid/neutrophil/basophil) hematopoietic progenitor cell lines. Proc Natl Acad Sci USA 1983; 80: 2931–2935.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Miltenyi S, Muller W, Weichel W, Radbruch A . High gradient magnetic cell separation with MACS. Cytometry 1990; 11: 231–238.

    CAS  PubMed  Google Scholar 

  48. Clodi K, Kliche K-O, Zhao S, Weidner D, Schenk T, Consoli U et al. Cell-surface exposure of phosphatidylserine correlates with the stage of fludarabine-induced apoptosis in chronic lymphocytic leukemia (CLL) and expression of apoptosis-regulating genes. Cytometry 2000; 40: 19–25.

    CAS  PubMed  Google Scholar 

  49. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C . A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995; 184: 39–51.

    CAS  PubMed  Google Scholar 

  50. Andreeff M, Darzynkiewicz Z, Sharpless TK, Clarkson BD, Melamed MR . Discrimination of human leukemia subtypes by flow cytometric analysis of cellular DNA and RNA. Blood 1980; 55: 282–293.

    CAS  PubMed  Google Scholar 

  51. Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D et al. Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 2001; 108: 851–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Neshat MS, Raitano AB, Wang HG, Reed JC, Sawyers CL . The survival function of the Bcr-Abl oncogene is mediated by Bad-dependent and -independent pathways: roles for phosphatidylinositol 3-kinase and Raf. Mol Cell Biol 2000; 20: 1179–1186.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sattler M, Verma S, Byrne CH, Shrikhande G, Winkler T, Algate PA et al. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol Cell Biol 1999; 19: 7473–7480.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kornblau SM, Milella M, Ball G, Qiu YH, Patel S, Ruvolo P et al. ERK2 and phospho-ERK2 are prognostic for survival in AML and complement the prognostic impact of Bax and Bcl2. 2002.

  55. Zhao S, Konopleva M, Chang S, Xie Z, Andreeff M . PI3K inhibition blocks BAD protein phosphorylation and induces apoptosis in cytokine-treated myeloid leukemic cells: synergism with retinoic acid. Blood 1999; 94: 483a.

    Google Scholar 

  56. Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK et al. Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 2003; 17: 995–997.

    CAS  PubMed  Google Scholar 

  57. Zhao S, Konopleva M, Xie Z, Hu W, Estrov Z, Milella M et al. Inhibition of PI3K by LY294002 promotes apoptosis and dephosphorylates BAD in myeloid leukemias. Blood 2000; 96: 97a.

    Google Scholar 

  58. Mills GB, Lu Y, Fang X, Wang H, Eder A, Mao M et al. The role of genetic abnormalities of PTEN and the phosphatidylinositol 3-kinase pathway in breast and ovarian tumorigenesis, prognosis, and therapy. Semin Oncol 2001; 28: 125–141.

    CAS  PubMed  Google Scholar 

  59. Jucker M, Sudel K, Horn S, Sickel M, Wegner W, Fiedler W et al. Expression of a mutated form of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin's lymphoma-derived cell line (CO). Leukemia 2002; 16: 894–901.

    CAS  PubMed  Google Scholar 

  60. McIlroy J, Chen D, Wjasow C, Michaeli T, Backer JM . Specific activation of p85-p110 phosphatidylinositol 3′-kinase stimulates DNA synthesis by Ras- and p70 S6 kinase-dependent pathways. Mol Cell Biol 1997; 17: 248–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gilliland DG, Griffin JD . Role of FLT3 in leukemia. Curr Opin Hematol 2002; 9: 274–281.

    PubMed  Google Scholar 

  62. Chian R, Young S, Danilkovitch-Miagkova A, Ronnstrand L, Leonard E, Ferrao P et al. Phosphatidylinositol 3 kinase contributes to the transformation of hematopoietic cells by the D816V c-Kit mutant. Blood 2001; 98: 1365–1373.

    CAS  PubMed  Google Scholar 

  63. Luo JM, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K et al. Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 2003; 17: 1–8.

    CAS  PubMed  Google Scholar 

  64. O'Gorman DM, McKenna SL, McGahon AJ, Knox KA, Cotter TG . Sensitisation of HL60 human leukaemic cells to cytotoxic drug-induced apoptosis by inhibition of PI3-kinase survival signals. Leukemia 2000; 14: 602–611.

    CAS  PubMed  Google Scholar 

  65. Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 1999; 21: 99–102.

    CAS  PubMed  Google Scholar 

  66. Terskikh AV, Miyamoto T, Chang C, Diatchenko L, Weissman IL . Gene expression analysis of purified hematopoietic stem cells and committed progenitors. Blood 2003; 102: 94–101.

    CAS  PubMed  Google Scholar 

  67. Mujoo K, Haridas V, Hoffmann JJ, Wachter GA, Hutter LK, Lu Y et al. Triterpenoid saponins from Acacia victoriae (Bentham) decrease tumor cell proliferation and induce apoptosis. Cancer Res 2001; 61: 5486–5490.

    CAS  PubMed  Google Scholar 

  68. Lali FV, Hunt AE, Turner SJ, Foxwell BM . The pyridinyl imidazole inhibitor SB203580 blocks phosphoinositide-dependent protein kinase activity, protein kinase B phosphorylation, and retinoblastoma hyperphosphorylation in interleukin-2-stimulated T cells independently of p38 mitogen-activated protein kinase. J Biol Chem 2000; 275: 7395–7402.

    CAS  PubMed  Google Scholar 

  69. Jiang K, Coppola D, Crespo NC, Nicosia SV, Hamilton AD, Sebti SM et al. The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitor-induced apoptosis. Mol Cell Biol 2000; 20: 139–148.

    PubMed  PubMed Central  Google Scholar 

  70. Karp JE, Lancet JE, Kaufmann SH, End DW, Wright JJ, Bol K et al. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical–laboratory correlative trial. Blood 2001; 97: 3361–3369.

    CAS  PubMed  Google Scholar 

  71. Lancet JE, Rosenblatt JD, Karp JE . Farnesyltransferase inhibitors and myeloid malignancies: phase I evidence of Zarnestra activity in high-risk leukemias. Semin Hematol 2002; 39: 31–35.

    CAS  PubMed  Google Scholar 

  72. Hu W, Konopleva M, Lu Y, Carter BZ, Mills GB, Andreeff M . New Akt inhibitor KP-302 induces apoptosis in myeloid leukemia. Blood 2002; 100: 269b.

    Google Scholar 

  73. Hidayat S, Yoshino K, Tokunaga C, Hara K, Matsuo M, Yonezawa K . Inhibition of amino acid-mTOR signaling by a leucine derivative induces G1 arrest in Jurkat cells. Biochem Biophys Res Commun 2003; 301: 417–423.

    CAS  PubMed  Google Scholar 

  74. Plo I, Bettaieb A, Payrastre B, Mansat-De Mas V, Bordier C, Rousse A et al. The phosphoinositide 3-kinase/Akt pathway is activated by daunorubicin in human acute myeloid leukemia cell lines. FEBS Lett 1999; 452: 150–154.

    CAS  PubMed  Google Scholar 

  75. Neri LM, Borgatti P, Tazzari PL, Bortul R, Cappellini A, Tabellini G et al. The phosphoinositide 3-kinase/AKT1 pathway involvement in drug and all-trans-retinoic acid resistance of leukemia cells. Mol Cancer Res 2003; 1: 234–246.

    CAS  PubMed  Google Scholar 

  76. Rambaldi A, Bassan R, Chiodini B, Lerede T, Giussani U, Oldani E et al. Prolonged administration of all-trans retinoic acid in combination with intensive chemotherapy and G-CSF for adult acute myelogenous leukemia: single-centre pilot study in different risk groups. Hematol J 2002; 3: 193–200.

    PubMed  Google Scholar 

  77. Suhara T, Kim HS, Kirshenbaum LA, Walsh K . Suppression of Akt signaling induces Fas ligand expression: involvement of caspase and Jun kinase activation in Akt-mediated Fas ligand regulation. Mol Cell Biol 2002; 22: 680–691.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yamaguchi H, Wang H-G . Akt promotes cell survival by inhibiting bax conformational changes and its translocation to mitochondria. Proc Am Assoc Cancer Res 2001; 42: 243.

    CAS  Google Scholar 

  79. Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 2000; 275: 10761–10766.

    CAS  PubMed  Google Scholar 

  80. Liu H, Perlman H, Pagliari LJ, Pope RM . Constitutively activated Akt-1 is vital for the survival of human monocyte-differentiated macrophages. Role of Mcl-1, independent of nuclear factor (NF)-kappaB, Bad, or caspase activation. J Exp Med 2001; 194: 113–126.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kennedy SG, Kandel ES, Cross TK, Hay N . Akt/protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 1999; 19: 5800–5810.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Carter BZ, Milella M, Altieri DC, Andreeff M . Cytokine-regulated expression of survivin in myeloid leukemia. Blood 2001; 97: 2784–2790.

    CAS  PubMed  Google Scholar 

  83. Carter BZ, Milella M, Kornblau SM, Schober WD, Tsao T, Contreras P et al. Expression and regulation of XIAP in acute myeloid leukemia by MAPK and PI3K signaling. Blood 2001; 98: 761a.

    Google Scholar 

  84. McCubrey JA, Lee JT, Steelman LS, Blalock WL, Moye PW, Chang F et al. Interactions between the PI3K and Raf signaling pathways can result in the transformation of hematopoietic cells. Cancer Detect Prev 2001; 25: 375–393.

    CAS  PubMed  Google Scholar 

  85. Blalock WL, Navolanic PM, Steelman LS, Shelton JG, Moye PW, Lee JT et al. Requirement for the PI3K/Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia. Leukemia 2003; 17: 1058–1067.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the NIH PO1 CA55164 and CA16672. MA is also supported by the Stringer Professorship for Cancer Treatment and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Andreeff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, S., Konopleva, M., Cabreira-Hansen, M. et al. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 18, 267–275 (2004). https://doi.org/10.1038/sj.leu.2403220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403220

Keywords

This article is cited by

Search

Quick links