Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Dynamics of BCR-ABL mRNA expression in first-line therapy of chronic myelogenous leukemia patients with imatinib or interferon α/ara-C

Abstract

We sought to determine dynamics of BCR-ABL mRNA expression levels in 139 patients with chronic myelogenous leukemia (CML) in early chronic phase, randomized to receive imatinib (n=69) or interferon (IFN)/Ara-C (n=70). The response was sequentially monitored by cytogenetics from bone marrow metaphases (n=803) and qualitative and quantitative RT-PCR from peripheral blood samples (n=1117). Complete cytogenetic response (CCR) was achieved in 60 (imatinib, 87%) vs 10 patients (IFN/Ara-C, 14%) after a median observation time of 24 months. Within the first year after CCR, best median ratio BCR-ABL/ABL was 0.087%, (imatinib, n=48) vs 0.27% (IFN/Ara-C, n=9, P=0.025). BCR-ABL was undetectable in 25 cases by real-time PCR, but in only four patients by nested PCR. Median best response in patients with relapse after CCR was 0.24% (n=3) as compared to 0.029% in patients with continuous remission (n=52, P=0.029). We conclude that (i) treatment with imatinib in newly diagnosed CML patients is associated with a rapid decrease of BCR-ABL transcript levels; (ii) nested PCR may reveal residual BCR-ABL transcripts in samples that are negative by real-time PCR; (iii) BCR-ABL transcript levels parallel cytogenetic response, and (iv) imatinib is superior to IFN/Ara-C in terms of the speed and degree of molecular responses, but residual disease is rarely eliminated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Sawyers CL . Chronic myeloid leukemia. N Engl J Med 1999; 340: 1330–1340.

    Article  CAS  Google Scholar 

  2. Thijsen S, Schuurhuis G, van Oostveen J, Ossenkoppele G . Chronic myeloid leukemia from basics to bedside. Leukemia 1999; 13: 1646–1674.

    Article  CAS  Google Scholar 

  3. Rowley JD . Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.

    Article  CAS  Google Scholar 

  4. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G . Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 1984; 36: 93–99.

    Article  CAS  Google Scholar 

  5. Grossman A, Mathew A, O'Connell MP, Tiso P, Distenfeld A, Benn P . Multiple restriction enzyme digests are required to rule out polymorphism in the molecular diagnosis of chronic myeloid leukemia. Leukemia 1990; 4: 63–64.

    CAS  PubMed  Google Scholar 

  6. Reiter A, Skladny H, Hochhaus A, Seifarth W, Heimpel H, Bartram CR et al. Molecular response of CML patients treated with interferon-alpha monitored by quantitative Southern blot analysis. German chronic myeloid leukaemia (CML) Study Group. Br J Haematol 1997; 97: 86–93.

    Article  CAS  Google Scholar 

  7. Morgan GJ, Hughes T, Janssen JW, Gow J, Guo AP, Goldman JM et al. Polymerase chain reaction for detection of residual leukaemia. Lancet 1989; 1: 928–929.

    Article  CAS  Google Scholar 

  8. Hughes TP, Morgan GJ, Martiat P, Goldman JM . Detection of residual leukemia after bone marrow transplant for chronic myeloid leukemia: role of polymerase chain reaction in predicting relapse. Blood 1991; 77: 874–878.

    CAS  PubMed  Google Scholar 

  9. Lion T, Henn T, Gaiger A, Kalhs P, Gadner H . Early detection of relapse after bone marrow transplantation in patients with chronic myelogenous leukaemia. Lancet 1993; 341: 275–276.

    Article  CAS  Google Scholar 

  10. Cross NC, Feng L, Chase A, Bungey J, Hughes TP, Goldman JM . Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood 1993; 82: 1929–1936.

    CAS  PubMed  Google Scholar 

  11. Hochhaus A, Lin F, Reiter A, Skladny H, Mason PJ, van Rhee F et al. Quantification of residual disease in chronic myelogenous leukemia patients on interferon-alpha therapy by competitive polymerase chain reaction. Blood 1996; 87: 1549–1555.

    CAS  PubMed  Google Scholar 

  12. Hochhaus A, Reiter A, Saussele S, Reichert A, Emig M, Kaeda J et al. Molecular heterogeneity in complete cytogenetic responders after interferon-alpha therapy for chronic myelogenous leukemia: low levels of minimal residual disease are associated with continuing remission. German CML Study Group and the UK MRC CML Study Group. Blood 2000; 95: 62–66.

    CAS  PubMed  Google Scholar 

  13. Mensink E, van de Locht A, Schattenberg A, Linders E, Schaap N, Geurts van Kessel A et al. Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukaemia patients using real-time quantitative RT-PCR. Br J Haematol 1998; 102: 768–774.

    Article  CAS  Google Scholar 

  14. Emig M, Saussele S, Wittor H, Weisser A, Reiter A, Willer A et al. Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 1999; 13: 1825–1832.

    Article  CAS  Google Scholar 

  15. Preudhomme C, Revillion F, Merlat A, Hornez L, Roumier C, Duflos-Grardel N et al. Detection of BCR-ABL transcripts in chronic myeloid leukemia (CML) using a ‘real time’ quantitative RT-PCR assay. Leukemia 1999; 13: 957–964.

    Article  CAS  Google Scholar 

  16. Hochhaus A, Weisser A, La Rosée P, Emig M, Müller MC, Saussele S et al. Detection and quantification of residual disease in chronic myelogenous leukemia. Leukemia 2000; 14: 998–1005.

    Article  CAS  Google Scholar 

  17. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002; 346: 645–652.

    Article  CAS  Google Scholar 

  18. Kantarjian HM, Talpaz M, O'Brien S, Smith TL, Giles FJ, Faderl S et al. Imatinib mesylate for Philadelphia chromosome-positive, chronic-phase myeloid leukemia after failure of interferon-alpha: follow-up results. Clin Cancer Res 2002; 8: 2177–2187.

    CAS  PubMed  Google Scholar 

  19. O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003; 348: 994–1004.

    Article  CAS  Google Scholar 

  20. Hasford J, Pfirrmann M, Hehlmann R, Allan NC, Baccarani M, Kluin-Nelemans JC et al. A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. Writing Committee for the Collaborative CML Prognostic Factors Project Group. J Natl Cancer Inst 1998; 90: 850–858.

    Article  CAS  Google Scholar 

  21. Sokal JE, Cox EB, Baccarani M, Tura S, Gomez GA, Robertson JE et al. Prognostic discrimination in ‘good-risk’ chronic granulocytic leukemia. Blood 1984; 63: 789–799.

    CAS  PubMed  Google Scholar 

  22. Schoch C, Schnittger S, Bursch S, Gerstner D, Hochhaus A, Berger U et al. Comparison of chromosome banding analysis, interphase- and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases. Leukemia 2002; 16: 53–59.

    Article  CAS  Google Scholar 

  23. Paschka P, Müller MC, Merx K, Kreil S, Schoch C, Lahaye T et al. Molecular monitoring of response to imatinib (Glivec) in CML patients pretreated with interferon alpha. Low levels of residual disease are associated with continuous remission. Leukemia 2003; 17: 1687–1694.

    Article  CAS  Google Scholar 

  24. Lin F, Goldman JM, Cross NC . A comparison of the sensitivity of blood and bone marrow for the detection of minimal residual disease in chronic myeloid leukaemia. Br J Haematol 1994; 86: 683–685.

    Article  CAS  Google Scholar 

  25. Cross NC, Feng L, Bungey J, Goldman JM . Minimal residual disease after bone marrow transplant for chronic myeloid leukaemia detected by the polymerase chain reaction. Leuk Lymphoma 1993; 11 (Suppl 1): 39–43.

    Article  Google Scholar 

  26. Cross NC, Melo JV, Feng L, Goldman JM . An optimized multiplex polymerase chain reaction (PCR) for detection of BCR-ABL fusion mRNAs in haematological disorders. Leukemia 1994; 8: 186–189.

    CAS  PubMed  Google Scholar 

  27. Melo JV, Yan XH, Diamond J, Lin F, Cross NC, Goldman JM . Reverse transcription/polymerase chain reaction (RT/PCR) amplification of very small numbers of transcripts: the risk in misinterpreting negative results. Leukemia 1996; 10: 1217–1221.

    CAS  PubMed  Google Scholar 

  28. Hochhaus A, Kreil S, Corbin AS, La Rosée P, Müller MC, Lahaye T et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002; 16: 2190–2196.

    Article  CAS  Google Scholar 

  29. Schiffer CA, Hehlmann R, Larson R . Perspectives on the treatment of chronic phase and advanced phase CML and Philadelphia chromosome positive ALL (1). Leukemia 2003; 17: 691–699.

    Article  CAS  Google Scholar 

  30. Hook EB . Exclusion of chromosomal mosaicism: tables of 90%, 95% and 99% confidence limits and comments on use. Am J Hum Genet 1977; 29: 94–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rosti G, Trabacchi E, Bassi S, Bonifazi F, de Vivo A, Martinelli G et al. Risk and early cytogenetic response to imatinib and interferon in chronic myeloid leukemia. Haematologica 2003; 88: 256–259.

    CAS  PubMed  Google Scholar 

  32. Merx K, Müller MC, Kreil S, Lahaye T, Paschka P, Schoch C et al. Early reduction of BCR-ABL mRNA transcript levels predicts cytogenetic response in chronic phase CML patients treated with imatinib after failure of interferon alpha. Leukemia 2002; 16: 1579–1583.

    Article  CAS  Google Scholar 

  33. van der Velden V, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert JA, van Dongen JJ . Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17: 1013–1034.

    Article  CAS  Google Scholar 

  34. Deininger MW, O'Brien SG, Ford JM, Druker BJ . Practical management of patients with chronic myeloid leukemia receiving imatinib. J Clin Oncol 2003; 21: 1637–1647.

    Article  CAS  Google Scholar 

  35. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.

    Article  CAS  Google Scholar 

  36. Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 2003; 101: 4701–4707.

    Article  CAS  Google Scholar 

  37. Druker BJ . Perspectives on the development of a molecularly targeted agent. Cancer Cell 2002; 1: 31–36.

    Article  CAS  Google Scholar 

  38. Kantarjian HM, Talpaz M, Cortes J, O'Brien S, Faderl S, Thomas D et al. Quantitative polymerase chain reaction monitoring of BCR-ABL during therapy with imatinib mesylate (STI571; Gleevec) in chronic-phase chronic myelogenous leukemia. Clin Cancer Res 2003; 9: 160–166.

    CAS  PubMed  Google Scholar 

  39. Wang L, Pearson K, Ferguson JE, Clark RE . The early molecular response to imatinib predicts cytogenetic and clinical outcome in chronic myeloid leukaemia. Br J Haematol 2003; 120: 990–999.

    Article  CAS  Google Scholar 

  40. Stentoft J, Pallisgaard N, Kjeldsen E, Holm MS, Nielsen JL, Hokland P . Kinetics of BCR-ABL fusion transcript levels in chronic myeloid leukemia patients treated with STI571 measured by quantitative real-time polymerase chain reaction. Eur J Haematol 2001; 67: 302–308.

    Article  CAS  Google Scholar 

  41. Faderl S, Talpaz M, Kantarjian HM, Estrov Z . Should polymerase chain reaction analysis to detect minimal residual disease in patients with chronic myelogenous leukemia be used in clinical decision making? Blood 1999; 93: 2755–2759.

    CAS  PubMed  Google Scholar 

  42. Lin F, van Rhee F, Goldman JM, Cross NC . Kinetics of increasing BCR-ABL transcript numbers in chronic myeloid leukemia patients who relapse after bone marrow transplantation. Blood 1996; 87: 4473–4478.

    CAS  PubMed  Google Scholar 

  43. Kantarjian H, Talpaz M, O'Brien S, Giles F, Beth RM, White K et al. Prediction of initial cytogenetic response for subsequent major and complete cytogenetic response to imatinib mesylate therapy in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. Cancer 2003; 97: 2225–2228.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the German CML Study Group, coinvestigators, nursing and research staff for the excellent cooperation. The study was supported by Novartis Pharma GmbH, Nürnberg, Germany, the Forschungsfonds der Fakultät für Klinische Medizin Mannheim der Universität Heidelberg, Germany, and the Competence Network ‘Acute and chronic leukemias’, sponsored by the German Bundesministerium für Bildung und Forschung (Projektträger Gesundheitsforschung; DLR e.V.- 01 GI9980/6). We are grateful to Ms Insa Gathmann, Novartis Pharmaceuticals, Basel, Switzerland, for providing clinical and cytogenetic data.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M., Gattermann, N., Lahaye, T. et al. Dynamics of BCR-ABL mRNA expression in first-line therapy of chronic myelogenous leukemia patients with imatinib or interferon α/ara-C. Leukemia 17, 2392–2400 (2003). https://doi.org/10.1038/sj.leu.2403157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403157

Keywords

This article is cited by

Search

Quick links