Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Molecular Targets For Therapy (MTT)
  • Published:

Molecular Targets for Therapy (MTT)

Regulation and targeting of antiapoptotic XIAP in acute myeloid leukemia

Abstract

XIAP is a member of the inhibitors-of-apoptosis family of proteins, which inhibit caspases and block cell death, with prognostic importance in AML. Here we demonstrate that cytokines regulate the expression of XIAP in leukemic cell lines and primary AML blasts. Inhibition of phosphatidylinositol-3 kinase (PI3K) with LY294002 and of the mitogen-activated protein kinase (MAPK) cascade by PD98059 resulted in decreased XIAP levels (34±8.7 and 23±5.7%, respectively). We then generated OCI-AML3 cells with constitutively phosphorylated Akt (p473-Akt) by retroviral gene transfer. Neither these nor Akt inhibitor-treated OCI-AML3 cells showed changes in XIAP levels, suggesting that XIAP expression is regulated by PI3K downstream effectors other than Akt. The induction of XIAP expression by cytokines through PI3K/MAPK pathways is consistent with its role in cell survival. Exposure of leukemic cells to chemotherapeutic agents decreased XIAP protein levels by caspase-dependent XIAP cleavage. Targeting XIAP by XIAP antisense oligonucleotide resulted in downregulation of XIAP, activation of caspases and cell death, and sensitized HL-60 cells to Ara-C. Our results suggest that XIAP is regulated by cytokines through PI3K, and to a lesser degree through MAPK pathways. Selective downregulation of XIAP expression might be of therapeutic benefit to leukemic patients.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Ambrosini G, Adida C, Altieri DC . A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997; 3: 917–921.

    Article  CAS  PubMed  Google Scholar 

  2. Deveraux QL, Takahashi R, Salvesen GS, Reed JC . X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997; 388: 300–304.

    Article  CAS  PubMed  Google Scholar 

  3. Deveraux QL, Roy N, Stennicke HR, Van AT, Zhou Q, Srinivasula SM et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 1998; 17: 2215–2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duckett CS, Nava VE, Gedrich RW, Clem RJ, Van Dongen JL, Gilfillan MC et al. A conserved family of cellular genes related to the baculovirus IAP gene and encoding apoptosis inhibitors. EMBO J 1996; 15: 2685–2694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996; 379: 349–353.

    Article  CAS  PubMed  Google Scholar 

  6. Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV . The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 1995; 83: 1243–1252.

    Article  CAS  PubMed  Google Scholar 

  7. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC . The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 1997; 16: 6914–6925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 1998; 58: 5315–5320.

    CAS  PubMed  Google Scholar 

  9. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 1998; 396: 580–584.

    Article  CAS  PubMed  Google Scholar 

  10. Deveraux QL, Reed JC . IAP family proteins – suppressors of apoptosis. Genes Dev 1999; 13: 239–252.

    Article  CAS  PubMed  Google Scholar 

  11. Fong WG, Liston P, Rajcan-Separovic E, St Jean M, Craig C, Korneluk RG . Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics 2000; 70: 113–122.

    Article  CAS  PubMed  Google Scholar 

  12. Liston P, Fong WG, Kelly NL, Toji S, Miyazaki T, Conte D et al. Identification of XAF1 as an antagonist of XIAP anti-caspase activity. Nat Cell Biol 2001; 3: 128–133.

    Article  CAS  PubMed  Google Scholar 

  13. Du C, Fang M, Li Y, Li L, Wang X . Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33–42.

    Article  CAS  PubMed  Google Scholar 

  14. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 43–53.

    Article  CAS  PubMed  Google Scholar 

  15. van Loo G, van Gurp M, Depuydt B, Srinivasula SM, Rodriguez I, Alnemri ES et al. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 2002; 9: 20–26.

    Article  CAS  PubMed  Google Scholar 

  16. Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein–caspase interaction. J Biol Chem 2002; 277: 432–438.

    Article  CAS  PubMed  Google Scholar 

  17. Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 2002; 277: 445–454.

    Article  CAS  PubMed  Google Scholar 

  18. Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 2002; 277: 439–444.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R . A serine protease, htra2, is released from the mitochondria and interacts with xiap, inducing cell death. Mol Cell 2001; 8: 613–621.

    Article  CAS  PubMed  Google Scholar 

  20. Holcik M, Lefebvre C, Yeh C, Chow T, Korneluk RG . A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nat Cell Biol 1999; 1: 190–192.

    Article  CAS  PubMed  Google Scholar 

  21. Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J . Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med 1998; 188: 211–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hofer-Warbinek R, Schmid JA, Stehlik C, Binder BR, Lipp J, de Martin R . Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J Biol Chem 2000; 275: 22064–22068.

    Article  CAS  PubMed  Google Scholar 

  23. Levkau B, Garton KJ, Ferri N, Kloke K, Nofer JR, Baba HA et al. xIAP induces cell-cycle arrest and activates nuclear factor-kappaB: new survival pathways disabled by caspase-mediated cleavage during apoptosis of human endothelial cells. Circ Res 2001; 88: 282–290.

    Article  CAS  PubMed  Google Scholar 

  24. Joazeiro CA, Weissman AM . RING finger proteins: mediators of ubiquitin ligase activity. Cell 2000; 102: 549–552.

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD . Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 2000; 288: 874–877.

    Article  CAS  PubMed  Google Scholar 

  26. Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K et al. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J 1999; 18: 179–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Holcik M, Gibson H, Korneluk RG . XIAP: apoptotic brake and promising therapeutic target. Apoptosis 2001; 6: 253–261.

    Article  CAS  PubMed  Google Scholar 

  28. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC . Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 1999; 18: 5242–5251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnson DE, Gastman BR, Wieckowski E, Wang GQ, Amoscato A, Delach SM et al. Inhibitor of apoptosis protein hILP undergoes caspase-mediated cleavage during T lymphocyte apoptosis. Cancer Res 2000; 60: 1818–1823.

    CAS  PubMed  Google Scholar 

  30. Carter BZ, Tsao T, Contreras P, Andreeff M . The apoptosis inhibiting protein, XIAP is highly expressed in myeloid leukemic cells, regulated by ATRA and cytokines, and cleaved by caspases. Blood 1999; 94: 154b.

    Google Scholar 

  31. Arai KI, Lee F, Miyajima A, Miyatake S, Arai N, Yokota T . Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem 1990; 59: 783–836.

    Article  CAS  PubMed  Google Scholar 

  32. Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M . Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 2002; 16: 1713–1724.

    Article  CAS  PubMed  Google Scholar 

  33. Tran J, Rak J, Sheehan C, Saibil SD, LaCasse E, Korneluk RG et al. Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Commun 1999; 264: 781–788.

    Article  CAS  PubMed  Google Scholar 

  34. Carter BZ, Milella M, Altieri DC, Andreeff M . Cytokine-regulated expression of survivin in myeloid leukemia. Blood 2001; 97: 2784–2790.

    Article  CAS  PubMed  Google Scholar 

  35. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 2000; 6: 1796–1803.

    CAS  PubMed  Google Scholar 

  36. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR . PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 1995; 270: 27489–27494.

    Article  CAS  PubMed  Google Scholar 

  37. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR . A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 1995; 92: 7686–7689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vlahos CJ, Matter WF, Hui KY, Brown RF . A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 1994; 269: 5241–5248.

    CAS  PubMed  Google Scholar 

  39. Hu Y, Qiao L, Wang S, Rong SB, Meuillet EJ, Berggren M et al. 3-(Hydroxymethyl)-bearing phosphatidylinositol ether lipid analogues and carbonate surrogates block PI3-K, Akt, and cancer cell growth. J Med Chem 2000; 43: 3045–3051.

    Article  CAS  PubMed  Google Scholar 

  40. Wu JC, Fritz LC . Irreversible caspase inhibitors: tools for studying apoptosis. Methods 1999; 17: 320–328.

    Article  CAS  PubMed  Google Scholar 

  41. Kohn AD, Takeuchi F, Roth RA . Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J Biol Chem 1996; 271: 21920–21926.

    Article  CAS  PubMed  Google Scholar 

  42. Miller AD, Rosman GJ . Improved retroviral vectors for gene transfer and expression. BioTechniques 1989; 7: 980–990.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. McCubrey JA, Steelman LS, Hoyle PE, Blalock WL, Weinstein-Oppenheimer C, Franklin RA et al. Differential abilities of activated Raf oncoproteins to abrogate cytokine dependency, prevent apoptosis and induce autocrine growth factor synthesis in human hematopoietic cells. Leukemia 1998; 12: 1903–1929.

    Article  CAS  PubMed  Google Scholar 

  44. Martin S, Reutelingsperger C, McGahon A, Rader J, van Schie R, LaFace D et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and ABL. J Exp Med 1995; 182: 1545–1556.

    Article  CAS  PubMed  Google Scholar 

  45. Krasilnikov MA . Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Moscow) 2000; 65: 68–78.

    Google Scholar 

  46. Segall H, Zhao S, Xie Z, Kavka K, Konopleva M, Sanchez-Williams G et al. Expression of the inhibitor of apoptosis protein (IAP) family in acute and chronic leukemia blasts. Blood 1998; 92: 201a.

    Google Scholar 

  47. O'Connor DS, Schechner JS, Adida C, Mesri M, Rothermel AL, Li F et al. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol 2000; 156: 393–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mograbi B, Bocciardi R, Bourget I, Busca R, Rochet N, Farahi-Far D et al. Glial cell line-derived neurotrophic factor-stimulated phosphatidylinositol 3-kinase and Akt activities exert opposing effects on the ERK pathway: importance for the rescue of neuroectodermic cells. J Biol Chem 2001; 276: 45307–45319.

    Article  CAS  PubMed  Google Scholar 

  49. Asselin E, Mills GB, Tsang BK . XIAP regulates Akt activity and caspase-3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. Cancer Res 2001; 61: 1862–1868.

    CAS  PubMed  Google Scholar 

  50. Asselin E, Wang Y, Tsang BK . X-linked inhibitor of apoptosis protein activates the phosphatidylinositol 3-kinase/Akt pathway in rat granulosa cells during follicular development. Endocrinology 2001; 142: 2451–2457.

    Article  CAS  PubMed  Google Scholar 

  51. Andreeff M, Jiang S, Zhang X, Konopleva M, Estrov Z, Snell VE et al. Expression of bcl-2-related genes in normal and AML progenitors: changes induced by chemotherapy and retinoic acid. Leukemia 1999; 13: 1881–1892.

    Article  CAS  PubMed  Google Scholar 

  52. Datta R, Oki E, Endo K, Biedermann V, Ren J, Kufe D . XIAP regulates DNA damage-induced apoptosis downstream of caspase-9 cleavage. J Biol Chem 2000; 275: 31733–31738.

    Article  CAS  PubMed  Google Scholar 

  53. Sasaki H, Sheng Y, Kotsuji F, Tsang BK . Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res 2000; 60: 5659–5666.

    CAS  PubMed  Google Scholar 

  54. Holcik M, Yeh C, Korneluk RG, Chow T . Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene 2000; 19: 4174–4177.

    Article  CAS  PubMed  Google Scholar 

  55. Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH . Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 2002; 277: 44236–44243.

    Article  CAS  PubMed  Google Scholar 

  56. Fulda S, Wick W, Weller M, Debatin KM . Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 2002; 8: 808–815.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Rosemarie Lauzon for her assistance in preparing the manuscript. This work was supported in part by Grants PO1 CA55164, PO1 CA16672, PO1 CA49639, and CA51025. We also thank Patty Contreras (Idun Pharmaceuticals, La Jolla, CA, USA) for supplying us with caspase inhibitors.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, B., Milella, M., Tsao, T. et al. Regulation and targeting of antiapoptotic XIAP in acute myeloid leukemia. Leukemia 17, 2081–2089 (2003). https://doi.org/10.1038/sj.leu.2403113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403113

Keywords

This article is cited by

Search

Quick links