Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27Kip1 and control of cyclin D1 expression

Abstract

The serine/threonine protein kinase Akt, a downstream effector of phosphoinositide 3-kinase (PI3K), plays a pivotal role in tumorigenesis because it affects the growth and survival of cancer cells. Several laboratories have demonstrated that Akt inhibits transcriptional activation of a number of related forkhead transcription factors now referred to as FoxO1, FoxO3, and FoxO4. Akt-regulated forkhead transcription factors are involved in the control of the expression of both the cyclin-dependent kinase (cdk) inhibitor p27Kip1 and proapoptotic Bim protein. Very little information is available concerning the importance of the PI3K/Akt pathway in HL60 human leukemia cells. Here, we present our findings showing that the PI3K/Akt axis regulates cell cycle progression of HL60 cells through multiple mechanisms also involving the control of FoxO1 and FoxO3. To this end, we took advantage of a HL60 cell clone (HL60AR cells) with a constitutively activated PI3K/Akt axis. When compared with parental (PT) HL60 cells, HL60AR cells displayed higher levels of phosphorylated FoxO1 and FoxO3. In AR cells forkhead factors localized predominantly in the cytoplasm, whereas in PT cells they were mostly nuclear. AR cells proliferated faster than PT cells and showed a lower amount of the cdk inhibitor p27Kip1, which was mainly found in the cytoplasm and was hyperphosphorylated on threonine residues. AR cells also displayed higher levels of cyclin D1 and phosphorylated p110 Retinoblastoma protein. The protein levels of cdk2, cdk4, and cdk6 were not altered in HL60AR cells, whereas the activities of both ckd2 and cdk6 were higher in AR than in PT cells. These results show that in HL60 cells the PI3K/Akt signaling pathway may be involved in the control of the cell cycle progression most likely through mechanisms involving the activation of forkhead transcription factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Testa JR, Bellacosa A . AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 2001; 98: 10983–10985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nicholson KM, Anderson NG . The protein kinase B/Akt signaling pathway in human malignancy. Cell Signal 2002; 14: 381–395.

    Article  CAS  PubMed  Google Scholar 

  3. Cantrell DA . Phosphoinositide 3-kinase signalling pathways. J Cell Sci 2001; 114: 1439–1445.

    CAS  PubMed  Google Scholar 

  4. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD . Cellular function of phosphoinositide 3-kinases: implications for development, immunity, homeostasis, and cancer. Annu Rev Cell Dev Biol 2001; 17: 615–675.

    Article  CAS  PubMed  Google Scholar 

  5. Brazil DP, Hemmings BA . Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 2001; 26: 657–664.

    Article  CAS  PubMed  Google Scholar 

  6. Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D et al. Activation of NF-κB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 2002; 21: 5673–5683.

    Article  CAS  PubMed  Google Scholar 

  7. Du K, Montminy M . CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 1998; 273: 32377–32379.

    Article  CAS  PubMed  Google Scholar 

  8. Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE et al. Akt/protein kinase B up-regulates Bcl-2 expression through c-AMP-response element-binding protein. J Biol Chem 2000; 275: 10761–10766.

    Article  CAS  PubMed  Google Scholar 

  9. Rena G, Guo S, Cichy SC, Unterman TG, Cohen P . Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 1999; 274: 17179–17183.

    Article  CAS  PubMed  Google Scholar 

  10. Biggs III WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC . Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 1999; 96: 7421–7426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM . Direct control of the forkhead transcription factor AFX by protein kinase B. Nature 1999; 398: 630–634.

    Article  CAS  PubMed  Google Scholar 

  12. Kaestner KH, Knochel W, Martinez DE . Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 2000; 14: 142–146.

    CAS  PubMed  Google Scholar 

  13. Brownawell AM, Kops GJPL, Macara IG, Burgering BMT . Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX. Mol Cell Biol 2001; 21: 3534–3546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stahl M, Dijkers PF, Kops GJPL, Lens SMA, Coffer PJ, Burgering BMT et al. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol 2002; 168: 5024–5031.

    Article  CAS  PubMed  Google Scholar 

  15. Tazzari PL, Cappellini A, Bortul R, Ricci F, Billi AM, Tabellini G et al. Flow cytometric detection of total and serine 473 phosphorylated Akt. J Cell Biochem 2002; 86: 704–715.

    Article  CAS  PubMed  Google Scholar 

  16. Neri LM, Borgatti P, Tazzari PL, Bortul R, Cappellini A, Tabellini G et al. The phosphoinositide 3-kinase/AKT1 pathway involvement in multidrug and all-trans-retinoic acid resistance of leukemia cells. Mol Cancer Res 2003; 1: 234–246.

    CAS  PubMed  Google Scholar 

  17. Bortul R, Tazzari PL, Cappellini A, Tabellini G, Billi AM, Bareggi R et al. Constitutively active AKT1 protects HL60 leukemia cells from TRAIL-induced apoptosis through a mechanism involving NF-κB activation and c-FLIPL up-regulation. Leukemia 2003; 17: 379–389.

    Article  CAS  PubMed  Google Scholar 

  18. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999; 5: 157–163.

    CAS  PubMed  Google Scholar 

  19. Ashkenazi A, Pai RC, Fong S, Lueng S, Lawrence DA, Marsters SA et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neri LM, Borgatti P, Capitani S, Martelli AM . The nuclear phosphoinositide 3-kinase/AKT pathway: a new second messenger system. Biochim Biophys Acta 2002; 1584: 73–80.

    Article  CAS  PubMed  Google Scholar 

  21. Lawlor MA, Alessi DR . PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 2001; 114: 2903–2910.

    CAS  PubMed  Google Scholar 

  22. Toyoshima H, Hunter T . p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 1994; 78: 67–74.

    Article  CAS  PubMed  Google Scholar 

  23. Nakayama K, Nakayama K . Cip/Kip cyclin-dependent kinase inhibitors: brakes of the cell cycle engine during development. BioEssays 1998; 20: 1020–1029.

    Article  CAS  PubMed  Google Scholar 

  24. Viglietto G, Motti ML, Bruni P, Melillo RM, D'Alessio A, Califano D et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27Kip1 by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 2002; 8: 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  25. Kiang J, Zubovitz J, Petrocelli T, Kotchekov R, Connor MK, Han K et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 2002; 8: 1153–1160.

    Article  Google Scholar 

  26. Bell SP, Dutta A . DNA replication in eukaryotic cells. Annu Rev Biochem 2002; 71: 333–374.

    Article  CAS  PubMed  Google Scholar 

  27. Kops GJ, Burgering BM . Forkhead transcription factors are targets of signalling by the proto-oncogene PKB (C-AKT). J Anat 2000; 197: 571–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burgering BM, Kops GJ . Cell cycle and death control: long live forkheads. Trends Biochem Sci 2002; 27: 352–360.

    Article  CAS  PubMed  Google Scholar 

  29. Coqueret O . New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 2003; 13: 65–70.

    Article  CAS  PubMed  Google Scholar 

  30. Obaya AJ, Sedivy JM . Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci 2002; 59: 126–142.

    Article  CAS  PubMed  Google Scholar 

  31. Ho A, Dowdy SF . Regulation of G(1) cell-cycle progression by oncogenes and tumor suppressor genes. Curr Opin Genet Dev 2002; 12: 47–52.

    Article  CAS  PubMed  Google Scholar 

  32. Smits VA, Medema RH . Checking out the G(2)/M transition. Biochim Biophys Acta 2001; 1519: 1–12.

    Article  CAS  PubMed  Google Scholar 

  33. Sherr CJ, Roberts JM . CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  34. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 2002; 8: 1145–1152.

    Article  CAS  PubMed  Google Scholar 

  35. Blain SW, Massagué J . Breast cancer banishes p27 from nucleus. Nat Med 2002; 8: 1076–1078.

    Article  CAS  PubMed  Google Scholar 

  36. Stiegler P, Giordano A . The family of retinoblastoma proteins. Crit Rev Eukaryot Gene Expr 2001; 11: 59–76.

    Article  CAS  PubMed  Google Scholar 

  37. Wang QM, Jones JB, Studzinski GP . Cyclin-dependent kinase inhibitor p27 as a mediator of the G1-S phase block induced by 1,25-dihydroxyvitamin D3 in HL60 cell. Cancer Res 1996; 56: 264–267.

    CAS  PubMed  Google Scholar 

  38. Wang QM, Luo X, Kheir A, Coffman FD, Studzinski GP . Retinoblastoma protein-overexpressing HL60 cells resistant to 1,25-dihydroxyvitamin D3 display increased CDK2 and CDK6 activity and shortened G1 phase. Oncogene 1998; 16: 2729–2737.

    Article  CAS  PubMed  Google Scholar 

  39. Dahia PL, Aguiar RC, Alberta J, Kum JB, Caron S, Sill H et al. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in haematological malignancies. Hum Mol Genet 1999; 8: 185–193.

    Article  CAS  PubMed  Google Scholar 

  40. Aggerholm A, Grønbćaek K, Guldberg P, Hokland P . Mutational analysis of the tumour suppressor gene MMAC1/PTEN in malignant myeloid disorder. Eur J Haematol 2000; 65: 109–113.

    Article  CAS  PubMed  Google Scholar 

  41. Liu TC, Lin PM, Chang JG, Lee JP, Chen TP, Lin SF . Mutational analysis of PTEN/MMAC1 in acute myeloid leukemia. Am J Hematol 2000; 63: 170–175.

    Article  CAS  PubMed  Google Scholar 

  42. Yamada KM, Araki M . Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 2001; 114: 2375–2382.

    CAS  PubMed  Google Scholar 

  43. Luo J-M, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K et al. Possibile dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 2003; 17: 1–8.

    Article  CAS  PubMed  Google Scholar 

  44. Krystal G, Damen JE, Helgason CD, Huber M, Hughes MR, Kalesnikoff J et al. SHIPs ahoy. Int J Biochem Cell Biol 1999; 31: 1007–1010.

    Article  CAS  PubMed  Google Scholar 

  45. G-Amlak M, Uddin S, Mahmud D, Damacela I, Lavelle D, Ahmed M et al. Regulation of myeloma cell growth through Akt/Gsk3/forkhead signaling pathway. Biochem Biophys Res Commun 2002; 297: 760–764.

    Article  CAS  PubMed  Google Scholar 

  46. Engstrom M, Karlsson R, Jonsson JI . Inactivation of the forkhead transcription factor FoxO3 is essential for PKB-mediated survival of hematopoietic progenitor cells by kit ligand. Exp Hematol 2003; 31: 316–323.

    Article  CAS  PubMed  Google Scholar 

  47. Myklebust JH, Blomhoff HK, Rusten LS, Stokke T, Smeland EB . Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. Exp Hematol 2002; 30: 990–1000.

    Article  CAS  PubMed  Google Scholar 

  48. Komatsu N, Watanabe T, Uchida M, Mori M, Kirito K, Kikuchi S et al. A member of forkhead transcription factor FKHRL1 is a downstream effector of STI571-induced cell cycle arrest in BCR-ABL-expressing cells. J Biol Chem 2003; 278: 6411–6419.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from: AIRC, Italian MIUR Cofin 2001 and 2002, FIRB 2001, Selected Topics Research Fund from Bologna University, CARISBO Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappellini, A., Tabellini, G., Zweyer, M. et al. The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27Kip1 and control of cyclin D1 expression. Leukemia 17, 2157–2167 (2003). https://doi.org/10.1038/sj.leu.2403111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403111

Keywords

This article is cited by

Search

Quick links