Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on Acute Promyelocytic Leukemia

Retinoid target genes in acute promyelocytic leukemia

Abstract

All-trans-retinoic acid (RA)-based differentiation therapy induces clinical remissions in acute promyelocytic leukemia (APL). This has propelled interest in elucidating the molecular mechanisms responsible for these remissions. The t(15;17) rearrangement results in the expression of the PML/RARα fusion transcript that is paradoxically linked to the etiology and clinical retinoid response in APL. PML/RARα expression blocks terminal myeloid differentiation in APL. Treatment with pharmacological RA dosages overcomes the dominant-negative effects of PML/RARα to activate transcription of retinoid target genes. This regulation is linked directly to RA effects in APL, including PML/RARα degradation and induction of differentiation. Identifying retinoid target genes is an important step in developing a mechanistic understanding of RA effects in APL. RA target genes have been uncovered through the use of molecular genetic approaches as well as unique cellular and transgenic APL models. Recent developments in the proteomic and functional genomic fields are providing useful tools for elucidating mechanisms of RA response or resistance in APL. These target genes represent potential therapeutic targets in APL and other retinoid-responsive diseases. Previous spotlights in Leukemia have highlighted the importance of cytokine effects and signal transduction crosstalk in retinoid response in APL and in normal hematopoiesis. This review builds on prior work by addressing the role of retinoid target genes in mediating retinoid response or resistance in APL.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Zile MH . Function of vitamin A in vertebrate embryonic development. J Nutr 2001; 131: 705–708.

    CAS  PubMed  Google Scholar 

  2. Gudas LJ, Sporn MB, Roberts AB . In: Sporn MB, Roberts AB, Goodman DS (eds). The Retinoids: Biology, Chemistry, and Medicine. New York: Raven Press Ltd. 1994, pp 443–520.

    Google Scholar 

  3. Nason-Burchenal K, Dmitrovsky E . In: Nau H, Blaner WS (eds). Retinoids: Handbook of Experimental Pharmacology. Berlin: Springer-Verlag; 1999, pp 301–322.

  4. Chambon P . A decade of molecular biology of retinoic acid receptors. FASEB J 1996; 10: 940–954.

    CAS  PubMed  Google Scholar 

  5. Mangelsdorf D, Umesono K, Evans RM . In: Sporn MB, Roberts AB, Goodman DS (eds). The Retinoids: Biology, Chemistry, and Medicine. New York: Raven Press Ltd. 1994, pp 319–349.

    Google Scholar 

  6. Chen JD, Evans RM . A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 1995; 377: 454–457.

    CAS  PubMed  Google Scholar 

  7. Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995; 377: 397–404.

    CAS  PubMed  Google Scholar 

  8. Privalsky ML . Regulation of SMRT and N-CoR corepressor function. Curr Top Microbiol Immunol 2001; 254: 117–136.

    CAS  PubMed  Google Scholar 

  9. Xu L, Glass CK, Rosenfeld MG . Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 1999; 9: 140–147.

    CAS  PubMed  Google Scholar 

  10. Rosenfeld MG, Glass CK . Coregulator codes of transcriptional regulation by nuclear receptors. J Biol Chem 2001; 276: 36865–36868.

    CAS  PubMed  Google Scholar 

  11. Mark M, Ghyselinck NB, Wendling O, Dupe V, Mascrez B, Kastner P et al. A genetic dissection of the retinoid signalling pathway in the mouse. Proc Nutr Soc 1999; 58: 609–613.

    CAS  PubMed  Google Scholar 

  12. Spinella MJ, Kitareewan S, Mellado B, Sekula D, Khoo KS, Dmitrovsky E . Specific retinoid receptors cooperate to signal growth suppression and maturation of human embryonal carcinoma cells. Oncogene 1998; 16: 3471–3480.

    CAS  PubMed  Google Scholar 

  13. Levin AA, Sturzenbecker LJ, Kazmer S, Bosakowski T, Huselton C, Allenby G et al. 9-cis retinoic acid stereoisomer binds and activates the nuclear receptor RXR alpha. Nature 1992; 355: 359–361.

    CAS  PubMed  Google Scholar 

  14. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM et al. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 1992; 68: 397–406.

    CAS  PubMed  Google Scholar 

  15. Lehmann JM, Dawson MI, Hobbs PD, Husmann M, Pfahl M . Identification of retinoids with nuclear receptor subtype-selective activities. Cancer Res 1991; 51: 4804–4809.

    CAS  PubMed  Google Scholar 

  16. Lehmann JM, Jong L, Fanjul A, Cameron JF, Lu XP, Haefner P et al. Retinoids selective for retinoid X receptor response pathways. Science 1992; 258: 1944–1946.

    CAS  PubMed  Google Scholar 

  17. Oridate N, Suzuki S, Higuchi M, Mitchell MF, Hong WK, Lotan R . Involvement of reactive oxygen species in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells. J Natl Cancer Inst 1997; 89: 1191–1198.

    CAS  PubMed  Google Scholar 

  18. Oridate N, Lotan D, Xu XC, Hong WK, Lotan R . Differential induction of apoptosis by all-trans-retinoic acid and N-(4-hydroxyphenyl)retinamide in human head and neck squamous cell carcinoma cell lines. Clin Cancer Res 1996; 2: 855–863.

    CAS  PubMed  Google Scholar 

  19. Delia D, Aiello A, Meroni L, Nicolini M, Reed JC, Pierotti MA . Role of antioxidants and intracellular free radicals in retinamide-induced cell death. Carcinogenesis 1997; 18: 943–948.

    CAS  PubMed  Google Scholar 

  20. Delia D, Aiello A, Lombardi L, Pelicci PG, Grignani F, Formelli F et al. N-(4-hydroxyphenyl)retinamide induces apoptosis of malignant hemopoietic cell lines including those unresponsive to retinoic acid. Cancer Res 1993; 53: 6036–6041.

    CAS  PubMed  Google Scholar 

  21. Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72: 567–572.

    CAS  PubMed  Google Scholar 

  22. Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P et al. All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood 1990; 76: 1704–1709.

    CAS  PubMed  Google Scholar 

  23. Warrell Jr RP, Frankel SR, Miller Jr WH, Scheinberg DA, Itri LM, Hittelman WN et al. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med 1991; 324: 1385–1393.

    PubMed  Google Scholar 

  24. Chen Z, Guidez F, Rousselot P, Agadir A, Chen SJ, Wang ZY et al. PLZF-RAR alpha fusion proteins generated from the variant t(11;17)(q23;q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors. Proc Natl Acad Sci USA 1994; 91: 1178–1182.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ . The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin–retinoic acid receptor fusion. Blood 1996; 87: 882–886.

    CAS  PubMed  Google Scholar 

  26. Arnould C, Philippe C, Bourdon V, Gregoire MJ, Berger R, Jonveaux P . The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet 1999; 8: 1741–1749.

    CAS  PubMed  Google Scholar 

  27. Wells RA, Catzavelos C, Kamel-Reid S . Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet 1997; 17: 109–113.

    CAS  PubMed  Google Scholar 

  28. Miller Jr WH, Kakizuka A, Frankel SR, Warrell Jr RP, DeBlasio A, Levine K et al. Reverse transcription polymerase chain reaction for the rearranged retinoic acid receptor alpha clarifies diagnosis and detects minimal residual disease in acute promyelocytic leukemia. Proc Natl Acad Sci USA 1992; 89: 2694–2698.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Guidez F, Huang W, Tong JH, Dubois C, Balitrand N, Waxman S et al. Poor response to all-trans retinoic acid therapy in a t(11;17) PLZF/RAR alpha patient. Leukemia 1994; 8: 312–317.

    CAS  PubMed  Google Scholar 

  30. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R . NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 1991; 77: 1080–1086.

    CAS  PubMed  Google Scholar 

  31. Nason-Burchenal K, Maerz W, Albanell J, Allopenna J, Martin P, Moore MA et al. Common defects of different retinoic acid resistant promyelocytic leukemia cells are persistent telomerase activity and nuclear body disorganization. Differentiation 1997; 61: 321–331.

    CAS  PubMed  Google Scholar 

  32. Rousselot P, Hardas B, Patel A, Guidez F, Gaken J, Castaigne S et al. The PML-RARα gene product of the t(15;17) translocation inhibits retinoic acid-induced granulocytic differentiation and mediated transactivation in human myeloid cells. Oncogene 1994; 9: 545–551.

    CAS  PubMed  Google Scholar 

  33. Ruthardt M, Testa U, Nervi C, Ferrucci PF, Grignani F, Puccetti E et al. Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor alpha (RARα) and PLZF-RARα fusion proteins on retinoic acid signalling. Mol Cell Biol 1997; 17: 4859–4869.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A . The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991; 66: 675–684.

    CAS  PubMed  Google Scholar 

  35. Fagioli M, Grignani F, Ferrucci PF, Alcalay M, Mencarelli A, Nicoletti I et al. Effect of the acute promyelocytic leukemia PML/RARα protein on differentiation and survival of myeloid precursors. Leukemia 1994; 8 (Suppl. 1): S7–S11.

    PubMed  Google Scholar 

  36. Grignani F, Ferrucci PF, Testa U, Talamo G, Fagioli M et al. The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 1993; 74: 423–431.

    CAS  PubMed  Google Scholar 

  37. Yoshida H, Kitamura K, Tanaka K, Omura S, Miyazaki T et al. Accelerated degradation of PML-retinoic acid receptor alpha (PML-RARA) oncoprotein by all-trans-retinoic acid in acute promyelocytic leukemia: possible role of the proteasome pathway. Cancer Res 1996; 56: 2945–2948.

    CAS  PubMed  Google Scholar 

  38. Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ . Altered myeloid development and acute leukemia in transgenic mice expressing PML-RARα under control of cathepsin G regulatory sequences. Blood 1997; 89: 376–387.

    CAS  PubMed  Google Scholar 

  39. Early E, Moore MA, Kakizuka A, Nason-Burchenal K, Martin P, Evans RM et al. Transgenic expression of PML/RARα impairs myelopoiesis. Proc Natl Acad Sci USA 1996; 93: 7900–7904.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brown D, Kogan S, Lagasse E, Weissman I, Alcalay M, Pelicci PG et al. A PML/RARα transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997; 94: 2551–2556.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. He LZ, Tribioli C, Rivi R, Peruzzi D, Pelicci PG, Soares V et al. Acute leukemia with promyelocytic features in PML/RARα transgenic mice. Proc Natl Acad Sci USA 1997; 94: 5302–5307.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kelly LM, Kutok JL, Williams IR, Boulton CL, Amaral SM, Curley DP et al. PML/RARα and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA 2002; 99: 8283–8288.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pollock JL, Westervelt P, Kurichety AK, Pelicci PG, Grisolano JL, Ley TJ . A bcr-3 isoform of RARα-PML potentiates the development of PML-RARα-driven acute promyelocytic leukemia. Proc Natl Acad Sci USA 1999; 96: 15103–15108.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kelly LM, Yu JC, Boulton CL, Apatira M, Li J, Sullivan CM et al. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 2002; 1: 421–432.

    CAS  PubMed  Google Scholar 

  45. Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002; 1: 433–443.

    CAS  PubMed  Google Scholar 

  46. Dyck JA, Maul GG, Miller Jr WH, Chen JD, Kakizuka A, Evans RM . A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 1994; 76: 333–343.

    CAS  PubMed  Google Scholar 

  47. Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M et al. Retinoic acid regulates aberrant nuclear localization of PML-RARα in acute promyelocytic leukemia cells. Cell 1994; 76: 345–356.

    CAS  PubMed  Google Scholar 

  48. Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 1994; 13: 1073–1083.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R et al. PML is essential for multiple apoptotic pathways. Nat Genet 1998; 20: 266–272.

    CAS  PubMed  Google Scholar 

  50. Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C et al. Role of PML in cell growth and the retinoic acid pathway. Science 1998; 279: 1547–1551.

    CAS  PubMed  Google Scholar 

  51. Quignon F, De Bels F, Koken M, Feunteun J, Ameisen JC, de The H . PML induces a novel caspase-independent death process. Nat Genet 1998; 20: 259–265.

    CAS  PubMed  Google Scholar 

  52. Lin RJ, Evans RM . Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol Cell 2000; 5: 821–830.

    CAS  PubMed  Google Scholar 

  53. Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P . PMLRAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR. EMBO J 1993; 12: 3171–3182.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kakizuka A, Miller Jr WH, Umesono K, Warrell Jr RP, Frankel SR, Murty VV et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell 1991; 66: 663–674.

    CAS  PubMed  Google Scholar 

  55. Hong SH, David G, Wong CW, Dejean A, Privalsky ML . SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARα) and PLZF-RARα oncoproteins associated with acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997; 94: 9028–9033.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jansen JH, Mahfoudi A, Rambaud S, Lavau C, Wahli W, Dejean A . Multimeric complexes of the PML/RARα fusion protein in acute promyelocytic leukemia cells and interference with retinoid and peroxisome-proliferator signaling pathways. Proc Natl Acad Sci USA 1995; 92: 7401–7405.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin RJ, Nagy L, Inoue S, Shao W, Miller Jr WH, Evans RM . Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998; 391: 811–814.

    CAS  PubMed  Google Scholar 

  58. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 91: 815–818.

    Google Scholar 

  59. Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 2002; 295: 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  60. Raelson JV, Nervi C, Rosenauer A, Benedetti L, Monczak Y, Pearson M et al. The PML/RARα oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood 1996; 88: 2826–2832.

    CAS  PubMed  Google Scholar 

  61. Nervi C, Ferrara FF, Fanelli M, Rippo MR, Tomassini B, Ferrucci PF et al. Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARα fusion protein. Blood 1998; 92: 2244–2251.

    CAS  PubMed  Google Scholar 

  62. Cheng GX, Zhu XH, Men XQ, Wang L, Huang QH, Jin XL et al. Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF-RARα and NPM-RARα. Proc Natl Acad Sci USA 1999; 96: 6318–6323.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Guidez F, Ivins S, Zhu J, Soderstrom M, Waxman S, Zelent A . Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARα underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 1998; 91: 2634–2642.

    CAS  PubMed  Google Scholar 

  64. He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A et al. Distinct interactions of PML-RARα and PLZF-RARα with co-repressors determine differential responses to RA in APL. Nat Genet 1998; 18: 126–135.

    CAS  PubMed  Google Scholar 

  65. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 1999; 96: 2907–2912.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu TX, Zhang JW, Tao J, Zhang RB, Zhang QH, Zhao CJ et al. Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells. Blood 2000; 96: 1496–1504.

    CAS  PubMed  Google Scholar 

  67. Lee KH, Chang MY, Ahn JI, Yu DH, Jung SS, Choi JH et al. Differential gene expression in retinoic acid-induced differentiation of acute promyelocytic leukemia cells, NB4 and HL-60 cells. Biochem Biophys Res Commun 2002; 296: 1125–1133.

    CAS  PubMed  Google Scholar 

  68. Balmer JE, Blomhoff R . Gene expression regulation by retinoic acid. J Lipid Res 2002; 43: 1773–1808.

    CAS  PubMed  Google Scholar 

  69. Park DJ, Chumakov AM, Vuong PT, Chih DY, Gombart AF, Miller Jr WH et al. CCAAT/enhancer binding protein epsilon is a potential retinoid target gene in acute promyelocytic leukemia treatment. J Clin Invest 1999; 103: 1399–1408.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Truong BT, Lee YJ, Lodie TA, Park DJ, Perrotti D, Watanabe N et al. CCAAT/enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Blood 2003; 101: 1141–1148.

    CAS  PubMed  Google Scholar 

  71. Chih DY, Chumakov AM, Park DJ, Silla AG, Koeffler HP . Modulation of mRNA expression of a novel human myeloid-selective CCAAT/enhancer binding protein gene (C/EBP epsilon). Blood 1997; 90: 2987–2994.

    CAS  PubMed  Google Scholar 

  72. Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H . Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med 2001; 7: 680–686.

    CAS  PubMed  Google Scholar 

  73. Snell V, Clodi K, Zhao S, Goodwin R, Thomas EK, Morris SW et al. Activity of TNF-related apoptosis-inducing ligand (TRAIL) in haematological malignancies. Br J Haematol 1997; 99: 618–624.

    CAS  PubMed  Google Scholar 

  74. Kok K, van den Berg A, Veldhuis PM, van der Veen AY, Franke M, Schoenmakers EF et al. A homozygous deletion in a small cell lung cancer cell line involving a 3p21 region with a marked instability in yeast artificial chromosomes. Cancer Res 1994; 54: 4183–4187.

    CAS  PubMed  Google Scholar 

  75. McLaughlin PM, Helfrich W, Kok K, Mulder M, Hu SW, Brinker MG et al. The ubiquitin-activating enzyme E1-like protein in lung cancer cell lines. Int J Cancer 2000; 85: 871–876.

    CAS  PubMed  Google Scholar 

  76. Spinella MJ, Freemantle SJ, Sekula D, Chang JH, Christie AJ, Dmitrovsky E . Retinoic acid promotes ubiquitination and proteolysis of cyclin D1 during induced tumor cell differentiation. J Biol Chem 1999; 274: 22013–22018.

    CAS  PubMed  Google Scholar 

  77. Langenfeld J, Kiyokawa H, Sekula D, Boyle J, Dmitrovsky E . Posttranslational regulation of cyclin D1 by retinoic acid: a chemoprevention mechanism. Proc Natl Acad Sci USA 1997; 94: 12070–12074.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kitareewan S, Pitha-Rowe I, Sekula D, Lowrey CH, Nemeth MJ, Golub TR et al. UBE1L is a retinoid target that triggers PML/RARα degradation and apoptosis in acute promyelocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 3806–3811.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yuan W, Krug RM . Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J 2001; 20: 362–371.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Li J, Peet GW, Balzarano D, Li X, Massa P, Barton RW et al. Novel NEMO/IkappaB kinase and NF-kappa B target genes at the pre-B to immature B cell transition. J Biol Chem 2001; 276: 18579–18590.

    CAS  PubMed  Google Scholar 

  81. Blomstrom DC, Fahey D, Kutny R, Korant BD, Knight Jr E . Molecular characterization of the interferon-induced 15-kDa protein. Molecular cloning and nucleotide and amino acid sequence. J Biol Chem 1986; 261: 8811–8816.

    CAS  PubMed  Google Scholar 

  82. Daly C, Reich NC . Characterization of specific DNA-binding factors activated by double-stranded RNA as positive regulators of interferon alpha/beta-stimulated genes. J Biol Chem 1995; 270: 23739–23746.

    CAS  PubMed  Google Scholar 

  83. Loeb KR, Haas AL . The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem 1992; 267: 7806–7813.

    CAS  PubMed  Google Scholar 

  84. Hershko A, Ciechanover A . The ubiquitin system. Annu Rev Biochem 1998; 67: 425–479.

    CAS  PubMed  Google Scholar 

  85. Hamerman JA, Hayashi F, Schroeder LA, Gygi SP, Haas AL, Hampson L et al. Serpin 2a is induced in activated macrophages and conjugates to a ubiquitin homolog. J Immunol 2002; 168: 2415–2423.

    CAS  PubMed  Google Scholar 

  86. Malakhov MP, Kim KI, Malakhova OA, Jacobs BS, Borden EC, Zhang DE . High-throughput immunoblotting: ubiquitin-like protein ISG15 modifies key regulators of signal transduction. J Biol Chem 2003; 278: 16608–16613.

    CAS  PubMed  Google Scholar 

  87. Liu LQ, Ilaria Jr R, Kingsley PD, Iwama A, van Etten RA, Palis J et al. A novel ubiquitin-specific protease, UBP43, cloned from leukemia fusion protein AML1-ETO-expressing mice, functions in hematopoietic cell differentiation. Mol Cell Biol 1999; 19: 3029–3038.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Malakhova OA, Yan M, Malakhov MP, Yuan Y, Ritchie KJ, Kim KI et al. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev 2003; 17: 455–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Schwer H, Liu LQ, Zhou L, Little MT, Pan Z, Hetherington CJ, Zhang DE . Cloning and characterization of a novel human ubiquitin-specific protease, a homologue of murine UBP43 (Usp18). Genomics 2000; 65: 44–52.

    CAS  PubMed  Google Scholar 

  90. Nason-Burchenal K, Takle G, Pace U, Flynn S, Allopenna J, Martin P et al. Targeting the PML/RAR alpha translocation product triggers apoptosis in promyelocytic leukemia cells. Oncogene 1998; 17: 1759–1768.

    CAS  PubMed  Google Scholar 

  91. Nason-Burchenal K, Allopenna J, Begue A, Stehelin D, Dmitrovsky E, Martin P . Targeting of PML/RARα is lethal to retinoic acid-resistant promyelocytic leukemia cells. Blood 1998; 92: 1758–1767.

    CAS  PubMed  Google Scholar 

  92. Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RARα/PML proteins. Blood 1996; 88: 1052–1061.

    CAS  PubMed  Google Scholar 

  93. Rusiniak ME, Yu M, Ross DT, Tolhurst EC, Slack JL . Identification of B94 (TNFAIP2) as a potential retinoic acid target gene in acute promyelocytic leukemia. Cancer Res 2000; 60: 1824–1829.

    CAS  PubMed  Google Scholar 

  94. Wolf FW, Sarma V, Seldin M, Drake S, Suchard SJ, Shao H et al. B94, a primary response gene inducible by tumor necrosis factor-alpha, is expressed in developing hematopoietic tissues and the sperm acrosome. J Biol Chem 1994; 269: 3633–3640.

    CAS  PubMed  Google Scholar 

  95. Andrews PW, Damjanov I, Simon D, Banting GS, Carlin C, Dracopoli NC et al. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest 1984; 50: 147–162.

    CAS  PubMed  Google Scholar 

  96. Freemantle SJ, Kerley JS, Olsen SL, Gross RH, Spinella MJ . Developmentally-related candidate retinoic acid target genes regulated early during neuronal differentiation of human embryonal carcinoma. Oncogene 2002; 21: 2880–2889.

    CAS  PubMed  Google Scholar 

  97. Kerley JS, Olsen SL, Freemantle SJ, Spinella MJ . Transcriptional activation of the nuclear receptor corepressor RIP140 by retinoic acid: a potential negative-feedback regulatory mechanism. Biochem Biophys Res Commun 2001; 285: 969–975.

    CAS  PubMed  Google Scholar 

  98. Langenfeld J, Lonardo F, Kiyokawa H, Passalaris T, Ahn MJ, Rusch V et al. Inhibited transformation of immortalized human bronchial epithelial cells by retinoic acid is linked to cyclin E down-regulation. Oncogene 1996; 13: 1983–1990.

    CAS  PubMed  Google Scholar 

  99. Ma Y, Koza-Taylor P, Dimattia D, Hames L, Fu H, Dragnev K et al. Microarray analysis uncovers retinoid target genes in human bronchial epithelial cells. Oncogene (in press).

  100. Phizicky E, Bastiaens PI, Zhu H, Snyder M, Fields S . Protein analysis on a proteomic scale. Nature 2003; 422: 208–215.

    CAS  PubMed  Google Scholar 

  101. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health grants T32 CA09658, RO-1 CA87546 and RO-1 CA62275, a Samuel Waxman Foundation Cancer Research Award, and the Oracle Giving Fund.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitha-Rowe, I., Petty, W., Kitareewan, S. et al. Retinoid target genes in acute promyelocytic leukemia. Leukemia 17, 1723–1730 (2003). https://doi.org/10.1038/sj.leu.2403065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403065

Keywords

This article is cited by

Search

Quick links