Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The development of potentially better practices to support the neurodevelopment of infants in the NICU

Abstract

Objective:

To review the existing evidence used to identify potentially better care practices that support newborn brain development.

Study Design:

Literature review.

Result:

Sixteen potentially better practices are identified and grouped into two operational clinical bundles based upon timing for recommended implementation.

Conclusion:

Existing evidence supports the implementation of selected care practices that potentially may support newborn brain development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Graven SN, Bowen Jr FW, Brooten D, Eaton A, Graven MN, Hack M et al. The high-risk infant environment Part 1. The role of the neonatal intensive care unit in the outcome of high-risk infants. J Perinatol 1992; 12: 164–172.

    CAS  PubMed  Google Scholar 

  2. Horbar JD . The Vermont Oxford Network: evidence-based quality improvement for neonatology. Pediatrics 1999; 103: 350–359. (Available at http://www.pediatrics.org/cgi/content/full/103/1/SE1/350).

    CAS  PubMed  Google Scholar 

  3. Horbar JD, Plsek PE, Leahy K . NIC/Q 2000: establishing habits for improvement in neonatal intensive care units. Pediatrics 2003; 111: e397–e410. (Available at: http://www.pediatrics.aappublications.org/cgi/content/full/111/4/SE1/e397).

    PubMed  Google Scholar 

  4. Gray-Muir JA . Evidence Based Healthcare: How to Make Health Policy and Management Decisions. Churchill Livingstone: New York, 1997. p 61.

    Google Scholar 

  5. Levitt P . Structural and functional maturation of the developing primate brain. J Pediatr 2003; 143: S35–S45.

    Article  CAS  PubMed  Google Scholar 

  6. Pomeroy SL, Volpe JJ . Development of the nervous system. In: Polin R, Fox W (eds). Fetal and Neonatal Physiology. WB Saunders Company: Philadelphia, 1992, pp 1490–1509.

    Google Scholar 

  7. Lan L, Yasuyuki Y, Tang Y, Sugahara T, Takahashi M, Ohba T et al. Normal fetal brain development with a half-Fourier rapid acquisition with relaxation enhancement sequence. Radiology 2000; 215: 205–210.

    Article  CAS  PubMed  Google Scholar 

  8. Moore KL . The Developing Human. Clinically Oriented Embryology. WB Saunders Company: Philadelphia, 1974.

    Google Scholar 

  9. Pakkenberg B, Pelvig D, Marner L, Bundgaard M, Gundersen H et al. Aging and the human neocortex. Exp Gerontol 2003; 38: 95–99.

    Article  PubMed  Google Scholar 

  10. Huppi P, Barnes P . Magnetic resonance techniques in the evaluation of the newborn brain. Clin Perinatol 1997; 24: 693–723.

    Article  CAS  PubMed  Google Scholar 

  11. Huttenlocher P, Dabholkar A . Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 1997; 387: 167–178.

    Article  CAS  PubMed  Google Scholar 

  12. Mrzlajk L, Uylings H, Kostovic I, Van Eden C . Neuronal development in human prenatal cortex in prenatal and postnatal stages. Prog Brain Res 1990; 85: 185–222.

    Article  Google Scholar 

  13. Bourgeois J . Synaptogenesis, heterochrony and epigenesis in the mammalian cerebral cortex. Acta Paediatr Suppl 1997; 422: 27–33.

    Article  CAS  PubMed  Google Scholar 

  14. Beradi N, Pizzorusso T, Maffei L . Critical periods during sensory development. Curr Opin Neurobiol 2000; 10: 138–145.

    Article  Google Scholar 

  15. Wiesel TN . Postnatal development of the visual cortex and the influence of environment. Nature 1982; 299: 583–591.

    Article  CAS  PubMed  Google Scholar 

  16. Wiesel T, Hubel D . Comparison of the effects of unilateral and bilateral eye closure on cortical unit response in kittens. J Neurophysiol 1965; 28: 1029–1040.

    Article  CAS  PubMed  Google Scholar 

  17. Hubel DH, Wiesel TN . The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 1970; 206: 419–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang L, Poo M . Electrical activity and development of neural circuits. Nat Neurosci 2001; 4: 1207–1214. (Available at: http://www.nature.com/neuro/journal/v4/n11s/full/nn753.html).

    Article  CAS  PubMed  Google Scholar 

  19. Penn AA, Shatz CJ . Brain waves and brain wiring: the role of endogenous and sensory-driven neural activity in development. Pediatr Res 1999; 45: 447–458.

    Article  CAS  PubMed  Google Scholar 

  20. Penn AA, Shatz CJ . Principles of endogenous and sensory activity-dependent brain development. The visual system. In: Lagercarantz H, Hanson M, Evrard P, Rodeck C (eds). The Newborn Brain: Neuroscience and Clinical Applications, Chapter 10. Cambridge University Press: New York, 2002, pp 204–225.

    Google Scholar 

  21. Feller M . Spontaneous correlated activity in developing neural circuits. Neuron 1999; 22: 653–656.

    Article  CAS  PubMed  Google Scholar 

  22. O'Donovan M, Chub N, Wenner P . Mechanisms of spontaneous activity in developing spinal networks. J Neurobiol 1998; 37: 131–145.

    Article  CAS  PubMed  Google Scholar 

  23. Ben-Ari Y . Excitatory actions of GABA during development: the nature of the nurture. Nature Rev 2002; 3: 728–739.

    Article  CAS  Google Scholar 

  24. Zheng J, Lee S, Zhou J . A developmental switch in the excitability and function of the starburst network in the mammalian retina. Neuron 2004; 44: 851–864.

    Article  CAS  PubMed  Google Scholar 

  25. Graven SN . Early neurosensory visual development of the fetus and newborn. Clin Perinatol 2004; 31: 199–216.

    Article  PubMed  Google Scholar 

  26. Lickliter R . Atypical perinatal sensory stimulation and early perceptual development: insights from developmental psychobiology. J Perinatal 2000; 20: S45–S54.

    Article  CAS  Google Scholar 

  27. Turkewitz G, Kenny PA . The role of developmental limitation of sensory input on sensory/perceptual organization. J Dev Behav Pediatr 1985; 6: 302–306.

    Article  CAS  PubMed  Google Scholar 

  28. Gottlieb G . Ontogenesis of sensory function in birds and mammals. In: Tobach E, Aronson L, Shaw E (eds). The Biopsychology of Development. Academic: New York, 1971, pp 67–128.

    Google Scholar 

  29. Gerhardt K, Abrams R . Fetal exposures to sound and vibroacoustic stimulation. J Perinatol 2000; 20: S21–S30.

    Article  CAS  PubMed  Google Scholar 

  30. Abrams R, Gerhardt K . The acoustic environment and physiological responses of the fetus. J Perinatol 2000; 20: S31–S36.

    Article  CAS  PubMed  Google Scholar 

  31. Moon R, Fifer W . Evidence of transnatal auditory learning. J Perinatol 2000; 20: S37–S44.

    Article  CAS  PubMed  Google Scholar 

  32. Turkewitz G, Kenny P . Limitations on input as a basis for neural organization and perceptual development: a preliminary theoretical statement. Dev Psychobiol 1982; 15: 357–368.

    Article  CAS  PubMed  Google Scholar 

  33. Gottlieb G, Tomlinson WT, Radell P . Developmental intersensory interference: premature visual experience suppresses auditory learning in ducklings. Infant Behav Dev 1989; 12: 1–12.

    Article  Google Scholar 

  34. Foreman N, Altaha M . The development of exploration and spontaneous alteration in hooded rat pups: effects of unusually early eyelid opening. Dev Psychobiol 1991; 24: 521–537.

    Article  CAS  PubMed  Google Scholar 

  35. Kenny P, Turkewitz G . Effects of unusually early visual stimulation on the development of homing behavior in the rat pup. Dev Psychobiol 1986; 19: 57–66.

    Article  CAS  PubMed  Google Scholar 

  36. Lickliter R . Premature visual stimulation accelerates intersensory functioning in bobwhite quail neonates. Dev Psychobiol 1990; 23: 15–27.

    Article  CAS  PubMed  Google Scholar 

  37. Gottlieb G . Ontogenesis of sensory function in birds and mammals. In: Tobach E, Aronson L, Shaw E (eds). The Biopsychology of Development. Academic Press: New York, 1971, pp 67–128.

    Google Scholar 

  38. Mistretta C, Bradley R . Effects of early sensory experience on brain and behavioral development. In: Gottlieb G (ed). Early Influences. Academic Press: New York, 1978, pp 215–247.

    Chapter  Google Scholar 

  39. Lickliter R, Virkar P . Intersensory functioning in bobwhite quail chicks: early sensory dominance. Dev Psychobiol 1989; 22: 651–667.

    Article  CAS  PubMed  Google Scholar 

  40. Gottlieb G, Simner M . Auditory versus visual flicker in directing the approach response of domestic chicks. J Comp Physiol Psychol 1967; 27: 411–416.

    Google Scholar 

  41. Johnston T, Gottlieb G . Development of visual species identification in ducklings: what is the role of imprinting? Anim Behav 1981; 29: 1082–1099.

    Article  Google Scholar 

  42. Storey A, Shapiro L . Development of preference in white Peking ducklings for stimuli in the natural post-hatch environment. Anim Behav 1979; 27: 411–416.

    Article  Google Scholar 

  43. Shillito E . A comparison of the role of vision and hearing in lambs finding their own dams. Appl Anim Ethol 1975; 1: 369–377.

    Article  Google Scholar 

  44. Lewkowicz D . Sensory dominance in infants: 1. Six-month-old infants' response to auditory-visual compounds. Dev Psychol 1988; 24: 155–171.

    Article  Google Scholar 

  45. Colavita FB . Human sensory dominance. Percept Psychophys 1974; 16: 409–412.

    Article  Google Scholar 

  46. Lickliter R . Prenatal visual experience alters postnatal sensory dominance hierarchy in bobwhite quail chicks. Infant Behav Dev 1994; 17: 185–193.

    Article  Google Scholar 

  47. Lickliter R, Lewkowicz D . Intersensory experience and early perceptual development: attenuated prenatal sensory stimulation affects postnatal auditory and visual responsiveness in bobwhite quail chicks. Dev Psychol 1995; 31: 609–618.

    Article  Google Scholar 

  48. Lickliter R, Stoumbos J . Modification of prenatal auditory experience alters postnatal auditory preferences of bobwhite quail chicks. Q J Exp Psychol 1992; 44B: 199–214.

    Google Scholar 

  49. Sleigh M, Lickliter R . Augmented prenatal auditory stimulation alters postnatal perception, arousal and survival in bobwhite quail chicks. Dev Psychobiol 1997; 30: 201–212.

    Article  CAS  PubMed  Google Scholar 

  50. Lickliter R, Hellewell T . Contextual determinants of auditory learning in bobwhite quail embryos and hatchlings. Dev Psychobiol 1992; 25: 17–24.

    Article  CAS  PubMed  Google Scholar 

  51. Gottlieb G . Social induction of malleability in ducklings: sensory basis and psychological mechanism. Anim Behav 1993; 45: 707–719.

    Article  Google Scholar 

  52. Lewkowicz D, Turkewitz G . Intersensory interaction in newborns: modification of visual preferences following exposure to sound. Child Dev 1981; 52: 827–832.

    Article  CAS  PubMed  Google Scholar 

  53. Gardner JM, Lewkowicz D, Rose S, Karmel B . Effects of visual and auditory stimulation on subsequent visual preferences in neonates. Int J Behav Dev 1986; 9: 251–263.

    Article  Google Scholar 

  54. Gardner JM, Karmel BZ . Arousal effects on visual preferences in neonates. Dev Psychol 1984; 20: 374–377.

    Article  Google Scholar 

  55. Lewkowicz D, Turkewitz G . Cross-modal equivalence in early infancy: auditory-visual intensity matching. Dev Psychol 1980; 16: 597–607.

    Article  Google Scholar 

  56. Sleigh M, Columbus R, Lickliter R . Intersensory experience and early perceptual development: postnatal experience with multimodal maternal cues affects intersensory responsiveness in bobwhite quail chicks. Dev Psychol 1998; 28: 353–366.

    Article  Google Scholar 

  57. Columbus R, Sleigh M, Lickliter R, Lewkowicz D . Unimodal sensory experience interferes with responsiveness to the spatial contiguity of multimodal maternal cues in bobwhite quail chicks. Infant Behav Dev 1998; 21: 397–409.

    Article  Google Scholar 

  58. Radell P, Gottlieb G . Developmental intersensory interference: augmented prenatal sensory experience interferes with auditory learning in duck embryos. Dev Psychol 1992; 28: 795–803.

    Article  Google Scholar 

  59. Scher MS, Steppe DA, Banks DL . Prediction of lower developmental performances of healthy neonates by neonatal EEG-sleep measures. Pediatr Neurol 1996; 14: 137–144.

    Article  CAS  PubMed  Google Scholar 

  60. Whitney M, Thoman EB . Early sleep patterns of premature infants are differentially related to later developmental disabilities. J Dev Behav Pediatr 1993; 14: 71–80.

    Article  CAS  PubMed  Google Scholar 

  61. Thoman EB, Denenberg VH, Sievel J, Zeidner LP, Becker P . State organization in neonates: developmental inconsistency indicates risk for developmental dysfunction. Neuropediatrics 1981; 12: 45–54.

    Article  CAS  PubMed  Google Scholar 

  62. Graven S . Sleep and brain development. Clin Perinatol 2006; 33: 693–706.

    Article  PubMed  Google Scholar 

  63. Curzi-Dascalova L, Figueroa JM, Eiselt M, Christova E, Virassamy A et al. Sleep state organization in premature infants of less than 38 weeks gestational age. Pediatr Res 1993; 34: 624–628.

    Article  CAS  PubMed  Google Scholar 

  64. Mirmiran M, Corner M . Neuronal discharge patterns in the occipital cortex of developing rats during active and quiet sleep. Brain Res 1982; 255: 37–48.

    Article  CAS  PubMed  Google Scholar 

  65. Mirmiran M, Ariagno RL . Role of REM sleep in brain development and plasticity. In: Maquet P, Smith C, Stickgold R (eds). Sleep and Brain Plasticity. Oxford University Press: New York, 2003, pp 182–187.

    Google Scholar 

  66. Jouvet-Mounier D, Astic L, Lacote D . Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month. Dev Psychobiol 1970; 2: 216–239.

    Article  CAS  PubMed  Google Scholar 

  67. Datta S, Patterson EH . Activation of phasic pontine wave (P-wave): a mechanism of learning and memory consolidation. In: Maquet P, Smith C, Stickgold R (eds). Sleep and Brain Plasticity. Oxford University Press: New York, 2003, pp 135–156.

    Chapter  Google Scholar 

  68. Anders T, Sadeh A, Appareddy V . Normal sleep in neonates and children. In: Ferber R, Kryger MH (eds) Principles and Practice of Sleep Medicine in the Child. WB Saunders: Philadelphia, 1995, pp 7–18.

    Google Scholar 

  69. Peirano P, Algarin C, Uauy R . Sleep-wake states and their regulatory mechanisms throughout early human development. J Pediatr 2003; 143: S70–S79.

    Article  PubMed  Google Scholar 

  70. Scher M, Sun M, Steppe D, Banks D, Guthrie R, Sclabassi R . Comparisons of EEG sleep state-specific spectral values between healthy full-term and preterm infants at comparable postconceptual ages. Sleep 1994; 17: 47–51.

    Article  CAS  PubMed  Google Scholar 

  71. Lehtonen L, Martin R . Ontogeny of sleep and awake states in relation to breathing in preterm infants. Semin Neonatol 2004; 9: 229–238.

    Article  PubMed  Google Scholar 

  72. Korte J, Wulff K, Oppe C, Siegmund R . Ultradian and circadian activity-rest rhythms of preterm neonates using actigraphic monitoring. Chronobiol Int 2001; 18: 697–708.

    Article  CAS  PubMed  Google Scholar 

  73. Mirmiran M, Maas Y, Ariagno R . Development of fetal and neonatal sleep and circadian rhythms. Sleep Med Rev 2003; 7: 321–334.

    Article  PubMed  Google Scholar 

  74. Roffwarg H, Muzio J, Dement W . Ontogenetic development of the human sleep-dream cycle. Science 1966; 152: 604–618.

    Article  CAS  PubMed  Google Scholar 

  75. Frank M, Stryker M . The role of sleep in the development of central visual pathways. In: Maquet P, Smith C, Stickgold R (eds). Sleep and Brain Plasticity. Oxford University Press: New York, 2003, pp 190–206.

    Google Scholar 

  76. Mirmiran M . The function of fetal/neonatal rapid eye movement sleep. Behav Brain Res 1995; 69: 13–22.

    Article  CAS  PubMed  Google Scholar 

  77. Kobayashi T, Good C, Mamiya K, Skinner R, Garcia-Rill E . Development of REM sleep drive and clinical implications. J Appl Physiol 2004; 96: 735–746.

    Article  CAS  PubMed  Google Scholar 

  78. Frank M, Heller H . The ontogeny of mammalian sleep: a reappraisal of alternative hypotheses. J Sleep Res 2003; 12: 25–34.

    Article  PubMed  Google Scholar 

  79. Scher M, Waisanen H, Lparo K, Johnson M . Prediction of neonatal state and maturational change using dimensional analysis. J Clin Neurophysiol 2005; 22: 159–165.

    Article  PubMed  Google Scholar 

  80. Seung HS . Half a century of Hebb. Nat Neurosci 2000; 3: 1166. (Available at http://www.nature.com/neuro/journal/v3/n11s/full/nn1100_1166.html).

    Article  CAS  PubMed  Google Scholar 

  81. Chen C, Tonegawa S . Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Ann Rev Neurosci 1997; 20: 157–184.

    Article  CAS  PubMed  Google Scholar 

  82. Fields RD . Making memories stick. Sci Am 2005; 2: 75–81.

    Google Scholar 

  83. Frey W, Morris GM . Synaptic tagging and long-term potentiation. Nature 1997; 385: 533–536.

    Article  CAS  PubMed  Google Scholar 

  84. Fields RD, Eshete F, Stevens B, Itoh K . Action potential-dependent regulation of gene expression: temporal specificity in Ca2+, cAMP-responsive element binding proteins, and mitogen-activated protein kinase signaling. J Neurosci 1997; 17: 7252–7266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dudek S, Fields RD . Gene expression in hippocampal long-term potentiation. Neuroscientist 1999; 5: 275–279.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 2004; 101: 8174–8179. (Available at: http://www.pnas.org/cgi/content/abstract/101/21/8174).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Maquet P, Smith C, Stickgold R . Sleep and Brain Plasticity. Oxford University Press: New York, 2003.

    Book  Google Scholar 

  88. McGaugh J . Memory—a century of consolidation. Science 2000; 287: 248–251.

    Article  CAS  PubMed  Google Scholar 

  89. Smith C . Sleep states and learning: a review of the animal literature. Neurosci Biohehav Rev 1985; 9: 157–168.

    Article  CAS  Google Scholar 

  90. Smith C . Sleep states and memory processes. Behav Brain Res 1995; 69: 137–145.

    Article  CAS  PubMed  Google Scholar 

  91. Buzsaki G . Memory consolidation during sleep: a neurophysiological perspective. J Sleep Res 1998; 7: 17–23.

    Article  PubMed  Google Scholar 

  92. Guiditta A, Amborsini M, Montangnese P, Mandile P, Cotugno M, Zucconi G et al. The sequential hypothesis of the function of sleep. Behav Brain Res 1995; 69: 157–166.

    Article  Google Scholar 

  93. Gais S, Plihal W, Wagner U, Born J . Early sleep triggers memory for early visual discrimination skills. Nat Neurosci 2000; 3: 1335–1339.

    Article  CAS  PubMed  Google Scholar 

  94. Stickgold R, LaTanya J, Hobson J . Visual discrimination learning requires sleep after training. Nat Neurosci 2000; 3: 1237–1238.

    Article  CAS  PubMed  Google Scholar 

  95. Stickgold R . Human studies of sleep and off-line memory reprocessing. In: Maquet P, Smith C, Stickgold R (eds). Sleep and Brain Plasticity. Oxford University Press: New York, 2003, pp 41–63.

    Chapter  Google Scholar 

  96. Born J, Gais S . Roles of early and late nocturnal sleep for the consolidation of human memories. In: Maquet P, Smith C, Stickgold R (eds). Sleep and Brain Plasticity. Oxford University Press: New York, 2003, pp 65–85.

    Chapter  Google Scholar 

  97. Guiditta A, Mandile R, Montagnese P, Piscopo S, Vescia S . The role of sleep in memory processing: the sequential hypothesis. In: Maquet P, Smith C, Stickgold R (eds). Sleep and Brain Plasticity. Oxford University Press: New York, 2003, pp 157–178.

    Chapter  Google Scholar 

  98. Levay S, Wiesel T, Hubel D . The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 1980; 91: 1–51.

    Article  Google Scholar 

  99. Antonini A, Stryker M . Rapid remodeling of axonal arbors in the visual cortex. Science 1993; 260: 1819–1821.

    Article  CAS  PubMed  Google Scholar 

  100. Guillery R, Stelzner D . The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus in the cat. J Comp Neurol 1970; 139: 413–421.

    Article  CAS  PubMed  Google Scholar 

  101. Jones B . Paradoxical sleep and its chemical/ structural substrates in the brain. Neuroscience 1991; 40: 637–656.

    Article  CAS  PubMed  Google Scholar 

  102. Mirmiran M, Corner M . Neuronal discharge patterns in the occipital cortex of developing rats during active and quiet sleep. Brain Res 1982; 255: 37–48.

    Article  CAS  PubMed  Google Scholar 

  103. Bowe-Anders C, Adrien J, Roffwarg H . Ontogenesis of ponto-geniculo-occipital activity in the lateral geniculate nucleus of the kitten. Exp Neurol 1974; 43: 242–260.

    Article  CAS  PubMed  Google Scholar 

  104. Davenne D, Adrien J . Suppression of PGO waves in the kitten: anatomical effects on the lateral geniculate nucleus. Neurosci Lett 1984; 45: 33–38.

    Article  CAS  PubMed  Google Scholar 

  105. Davenne D, Adrien J . Lesion of the ponto-geniculo-occipital pathways in kittens. I. Effects on sleep and on unitary discharge of the lateral geniculate nucleus. Brain Res 1987; 409: 1–9.

    Article  CAS  PubMed  Google Scholar 

  106. Davenne D, Fregnac Y, Imbert M, Adrien J . Lesion of the PGO pathways in the kitten. II. Impairment of physiological and morphological maturation of the lateral geniculate nucleus. Brain Res 1989; 485: 267–277.

    Article  CAS  PubMed  Google Scholar 

  107. Shaffery J, Roffwarg H, Speciale S, Marks G . Ponto-geniculo-occipital-wave suppression amplifies lateral geniculate nucleus-size changes in monocularly deprived kittens. Dev Brain Res 1999; 114: 109–119.

    Article  CAS  Google Scholar 

  108. Shaffery JP, Sinton CM, Bissette G, Roffwarg HP, Marks GA . Rapid eye movement sleep deprivation modifies expression of long-term potentiation in visual cortex of immature rats. Neuroscience 2002; 110: 431–443.

    Article  CAS  PubMed  Google Scholar 

  109. Oksenberg A, Shaffery J, Marks G, Speciale S, Mihailoff G, Roffwarg H . Rapid eye movement sleep deprivation in kittens amplifies LGN cell-size disparity induced by monocular deprivation. Brain Res Dev Brain Res 1996; 97: 51–61.

    Article  CAS  PubMed  Google Scholar 

  110. Marks G, Roffwarg H, Shaffery J . Neuronal activity in the lateral geniculate nucleus associated with ponto-geniculate-occipital waves lacks lamina specificity. Brain Res 1999; 815: 21–28.

    Article  CAS  PubMed  Google Scholar 

  111. Marks G, Shaffery J, Oksensberg A, Speciale S, Roffwarg H . A functional role for REM sleep in brain maturation. Behav Brain Res 1995; 69: 1–11.

    Article  CAS  PubMed  Google Scholar 

  112. Frank M, Stryker M . The role of sleep in the development of central visual pathways. In: Maquet P, Smith C, Stickgold R (eds). Sleep and Brain Plasticity. Oxford University Press: New York, 2003 pp 198–206.

    Google Scholar 

  113. Feng P, Ma Y . Instrumental REM sleep deprivation in neonates leads to adult depression-like behaviors in rats. Sleep 2004; 27: 368.

    Google Scholar 

  114. Mirmiran M, van de Poll N, Vorner M, van Oyen H, Bour H . Suppression of active sleep by chronic treatment with clomipramine during early postnatal development: effects upon adult sleep and behavior in the rat. Brain Res 1981; 204: 129–146.

    Article  CAS  PubMed  Google Scholar 

  115. Mirmiran M, Scholtens J, van de Poll N, Uylings H, van der Gugten J, Boer G . Effects of experimental suppression of active (REM sleep) sleep during early development upon adult brain and behavior in the rat. Brain Res 1983; 283: 277–286.

    Article  CAS  PubMed  Google Scholar 

  116. Mirmiran M . The importance of fetal/neonatal REM sleep. Eur J Obstet Gynecol Reprod Biol 1986; 21: 283–291.

    Article  CAS  PubMed  Google Scholar 

  117. De Boer S, Mirmiran M, Van Haaren F, Louwerse A, van de Poll N . Neurobehavioral teratogenic effects of clomipramine and alpha-methydolpa. Neurotoxicol Teratol 1989; 11: 77–84.

    Article  CAS  PubMed  Google Scholar 

  118. Hilakivi L, Sinclair J, Hilakivi I . Effects of neonatal treatment with clomipramine on adult ethanol related behavior in the rat. Brain Res 1984; 317: 129–132.

    Article  CAS  PubMed  Google Scholar 

  119. Hilakivi L, Hilakivi I . Increased adult behavioral ‘despair’ in rats neonatally exposed to desipramine or zimeldine: an animal model of depression? Pharmacol Biochem Behav 1987; 28: 367–369.

    Article  CAS  PubMed  Google Scholar 

  120. Johnston MV, Silverstein FS . Development of neurotransmitter. In: Polin R, Fox W (eds). Fetal and Neonatal Physiology. WB Saunders Company: Philadelphia, 1992, pp 1519–1525.

    Google Scholar 

  121. Lauder J . Hormonal and humoral influence on brain development. Psychoneuroendocrinology 1983; 8: 121–155.

    Article  CAS  PubMed  Google Scholar 

  122. Edeline J . Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog Neurobiol 1999; 57: 165–234.

    Article  CAS  PubMed  Google Scholar 

  123. Hasselmo M . Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci 1999; 3: 351–359.

    Article  CAS  PubMed  Google Scholar 

  124. Rasmussen D . The role of acetylcholine in cortical synaptic plasticity. Behav Brain Res 2000; 115: 205–218.

    Article  Google Scholar 

  125. Caillard O, Moreno H, Schwaller B, Llano I, Celio M, Marty A . Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci USA 2000; 97: 13372–13377. (Available at: http://www.pnas.org/cgi/content/abstract/pnas;97/24/13372).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hogan D, Roffwarg H, Shaffery J . The effects of one week of REM sleep deprivation on parvalbumin and calbindin immunoreactive neurons in central visual pathways of kittens. J Sleep Res 2001; 10: 285–296.

    Article  CAS  PubMed  Google Scholar 

  127. Frank M, Issa N, Stryker M . Sleep enhances plasticity in developing visual cortex. Neuron 2001; 30: 275–287.

    Article  CAS  PubMed  Google Scholar 

  128. Frank M, Stryker M . The role of sleep in the development of central visual pathways. In: Maquet P, Smith C, Stickgold R (eds). Sleep and Brain Plasticity. Oxford University Press: New York, 2003, pp 189–206.

    Chapter  Google Scholar 

  129. Denenberg VH, Zeidner LP, Thoman EB, Kramer P, Rowe JC, Phillips AF et al. Effects of theophylline on behavioral state development in the newborn rabbit. J Pharmacol Exp Ther 1982; 221: 604–608.

    CAS  PubMed  Google Scholar 

  130. Chardon K, Bach V, Telliez F, Cardot V, Tourneux P, Leke A et al. Effect of caffeine on peripheral chemoreceptor activity in premature neonates: interaction with sleep stages. J Appl Physiol 2004; 96: 2161–2166.

    Article  CAS  PubMed  Google Scholar 

  131. Curzi-Dascalova L, Aujard Y, Gaultier C, Rajguru M . Sleep organization is unaffected by caffeine in premature infants. J Pediatr 2002; 140: 766–771.

    Article  PubMed  Google Scholar 

  132. Thoman EB, Davis DH, Raye JR, Philipps AF, Rowe JC, Denenberg VH . Theophylline affects sleep-wake state development in premature infants. Neuropediatrics 1985; 16: 13–18.

    Article  CAS  PubMed  Google Scholar 

  133. Morris JL, Rosen DA, Rosen KR . Nonsteroidal anti-inflammatory agents in neonates. Paediatr Drugs 2003; 5: 385–405.

    Article  PubMed  Google Scholar 

  134. Murphy PG, Badia P, Myers BL, Boecker MR, Wright Jr KP . Nonsteroidal anti-inflammatory drugs affect normal sleep patterns in humans. Physiol Behav 1994; 55: 1063–1066.

    Article  CAS  PubMed  Google Scholar 

  135. Mannella JA, Gerrish CJ . Effects of exposure to alcohol in mother's milk on infant sleep. Pediatrics 1998; 101: e2. (Available at: http://pediatrics.aappublications.org/cgi/content/abstract/101/5/e2).

    Article  Google Scholar 

  136. Sawnani H, Jackson T, Murphy T, Beckerman R, Simakajornboon N . The effect of maternal smoking on respiratory and arousal patterns in preterm infants during sleep. Am J Respir Crit Care Med 2004; 169: 733–738.

    Article  PubMed  Google Scholar 

  137. Lipton EL, Steinschneider A, Richmond JB . Swaddling a child care practice: historical, cultural, and experimental observations. Pediatrics 1965; 35: 519–567.

    Google Scholar 

  138. Franco P, Seret N, Van Hees J, Scaillet S, Groswasser J, Kahn A . Influence of swaddling on sleep and arousal characteristics of healthy infants. Pediatrics 2005; 115: 1307–1311.

    Article  PubMed  Google Scholar 

  139. Caglayan S, Yaprak I, Sackin E, Kansoy S, Aydinlioglu H . A differenct approach to sleep problems of infancy: swaddling above the waist. Turk J Pediatr 1991; 33: 117–120.

    CAS  PubMed  Google Scholar 

  140. Claudia M, Gerard C, Harris K, Bradley T, Thach B . Spontaneous arousals in supine infants while swaddled and unswaddled during rapid eye movement and quiet sleep. Pediatrics 2002; 110: e70 (Available at: http://pediatrics.aappublications.org/cgi/content/abstract/110/6/e70).

    Article  Google Scholar 

  141. Neu M, Brown JV . Infant physiologic and behavioral organization during swaddled versus unswaddled weighing. J Perinatol 1997; 17: 193–198 (PMID: 9210073).

    CAS  PubMed  Google Scholar 

  142. Brackbill Y . Continuous stimulation reduces arousal level: stability of effect over time. Child Dev 1973; 44: 43–46.

    Article  CAS  PubMed  Google Scholar 

  143. Van Sleuwen BE, L'Hoir MP, Engelberts A, Busschers W, Westers P, Blom M et al. Comparison of behavior modification with and without swaddling as interventions for excessive crying. J Pediatr 2006; 149: 512–517.

    Article  CAS  PubMed  Google Scholar 

  144. Ohgi S, Akiyama T, Ansawa K, Shigemori K . Randomised controlled trial of swaddling versus massage in the management of excessive crying in infants with cerebral injuries. Arch Dis Child 2004; 89: 212–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Giacoman S . Hunger and motor restraint on arousal and visual attention in the infant. Child Dev 1971; 42: 605–614.

    Article  CAS  PubMed  Google Scholar 

  146. Short MA, Brooks-Brunn JA, Reeve DS, Yeager J, Thorpe JA . The effects of swaddling versus standard positioning on neuromuscular development in very low birth weight infants. Neonatal Netw 1996; 15: 25–31.

    CAS  PubMed  Google Scholar 

  147. Fearon I, Kisilevsky BS, Hains SM, Muir DW, Tranmer J . Swaddling after heel lance: age-specific effects on behavioral recovery in preterm infants. J Dev Behav Pediatr 1997; 18: 222–232.

    Article  CAS  PubMed  Google Scholar 

  148. Prasopkittikun T, Tilokskulchai F . Management of pain from heel stick in neonates: an analysis of research conducted in Thailand. J Perinat Neonatal Nurs 2003; 17: 304–312.

    Article  PubMed  Google Scholar 

  149. Gerard C, Harris K, Thach B . Physiologic studies on swaddling: an ancient child care practice, which may promote the supine position for infant sleep. J Pediatr 2002; 141: 398–404.

    Article  PubMed  Google Scholar 

  150. Van Gestel J, L'Hoir MP, Berge M, Jansen N, Plotz F . Risks of ancient practices in modern times. Pediatrics 2002; 110: e78. (Available at: http://pediatrics.aappublications.org/cgi/content/abstract/110/6/e78).

    Article  PubMed  Google Scholar 

  151. Nelson EA, Taylor BJ, Weatherall IL . Sleeping position and infant bedding may predispose to hyperthermia and sudden infant death syndrome. Lancet 1989; 1199–1201.

  152. Yurdakok K, Yavuz T, Taylor C . Swaddling and acute respiratory infections. Am J Public Health 1990; 80: 873–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rabin DL, Barnett CL, Arnold WD, Freiberger RH, Brooks G . Untreated congenital hip disease: a study of the epidemiology, natural history, and social aspects of the disease in a Navajo population. Am J Public Health 1965; 55: 1–44.

    Article  Google Scholar 

  154. Kutlu A, Mernik R, Mutlu M, Kutlu R, Arslan A . Congenital dislocation of the hip and its relation to swaddling used in Turkey. J Pediatr Orthop 1992; 12: 598–602.

    Article  CAS  PubMed  Google Scholar 

  155. Bu'Lock F, Woolridge M, Braum J . Development of co-ordination of sucking, swallowing and breathing. Ultrasound study of term and preterm infants. Dev Med Child Neurol 1990; 32: 669–678.

    Article  CAS  PubMed  Google Scholar 

  156. Lau C, Smith EO, Schanler RJ . Coordination of suck-swallow and swallow-respiration in preterm infants. Acta Paediatr 2003; 92: 721–727.

    Article  CAS  PubMed  Google Scholar 

  157. Mizuno K . The maturation and coordination of sucking, swallowing, and respiration in preterm infants. J Pediatr 2003; 142: 36–40.

    Article  PubMed  Google Scholar 

  158. Gewolb IH, Vice FL, Schwietzer-Kenney EL, Taciak VL, Bosma JF . Developmental patterns of rhythmic suck and swallow in preterm infants. Dev Med Child Neurol 2001; 43: 22–27.

    Article  CAS  PubMed  Google Scholar 

  159. Hafstrom M, Kjellmer I . Non-nutritive sucking in the healthy pre-term infant. Early Hum Dev 2000; 60: 13–24.

    Article  CAS  PubMed  Google Scholar 

  160. Lau C, Alagugurusamy R, Schanler RJ, Smith EO, Shulman RJ . Characterization of the developmental stages of sucking in preterm infants during bottle feeding. Acta Paediatr 2000; 89: 846–852.

    Article  CAS  PubMed  Google Scholar 

  161. Lundqvist C, Hafstrom M . Non-nutritive sucking in full-term infants studied at term conceptional age. Acta Paediatr 1999; 88: 1287–1289.

    Article  CAS  PubMed  Google Scholar 

  162. Medoff-Cooper B, McGrath JM, Bilker W . Nutritive sucking and neurobehavioral development in preterm infants from 34 weeks PCA to term. MCN Am J Matern Child Nurs 2000; 25: 64–70.

    Article  CAS  PubMed  Google Scholar 

  163. McCain G et al. A feeding protocol for healthy preterm infants that shortens time to oral feeding. J Pediatr 2001; 139: 374–379.

    Article  CAS  PubMed  Google Scholar 

  164. McCain GC . An evidence-based guideline for introducing oral feeding to healthy preterm infants. Neonatal Netw 2003; 22: 45–50.

    Article  PubMed  Google Scholar 

  165. Schwartz R, Moody L, Yarandi H, Anderson GC . A meta-analysis of critical outcome variables in nonnutritive sucking in preterm infants. Nurs Res 1987; 36: 292–295.

    Article  CAS  PubMed  Google Scholar 

  166. Fucille S, Gisel E, Lau C . Oral stimulation accelerates the transition from tube to oral feeding in preterm infants. J Pediatr 2002; 141: 230–236.

    Article  Google Scholar 

  167. Fucille S, Gisel EG, Lau C . Effects of an oral stimulation program on sucking skill maturation of preterm infants. Dev Med Child Neurol 2005; 47: 158–162.

    Article  Google Scholar 

  168. Law-Morstatt L, Judd DM, Snyder P, Baier RJ, Dhanireddy R . Pacing as a treatment technique for transitional sucking patterns. J Perinatol 2002; 23: 483–488.

    Article  Google Scholar 

  169. Kanarek KSS, Shulman D . Non-nutritive sucking does not increase blood levels of gastrin, motilin, insulin and insulin-like growth factor 1 in premature infants receiving enteral feedings. Acta Paediatrica 1992; 81: 974–977.

    Article  CAS  PubMed  Google Scholar 

  170. Hill AS, Kurkowski TB, Garcia J . Oral support measures used in feeding the preterm infant. Nurs Res 2000; 49: 2–10.

    Article  CAS  PubMed  Google Scholar 

  171. Pickler RH, Reyna BA . Effects of non-nutritive sucking on nutritive sucking, breathing, and behavior during bottle feedings of preterm infants. Adv Neonatal Care 2004; 4: 226–234.

    Article  PubMed  Google Scholar 

  172. Pickler RH, Frankel HB, Walsh KM, Thompson NM . Effects of nonnutritive sucking on behavioral organization and feeding performance in preterm infants. Nurs Res 1996; 45: 132–135.

    Article  CAS  PubMed  Google Scholar 

  173. Pickler RH, Higgins KE, Crummette BD . The effect of nonnutritive sucking on bottle-feeding stress in preterm infants. J Obstet Gynecol Neonatal Nurs 1993; 22: 230–234.

    Article  CAS  PubMed  Google Scholar 

  174. Gill NE, Behnke M, Conlon M, McNeely JB, Anderson GC . Effect of nonnutritive sucking on behavioral state in preterm infants before feeding. Nurs Res 1988; 37: 347–350.

    Article  CAS  PubMed  Google Scholar 

  175. McCain GC . Promotion of preterm infant nipple feeding with nonnutritive sucking. J Pediatr Nurs 1995; 10: 3–8.

    Article  CAS  PubMed  Google Scholar 

  176. DiPietro JA, Cusson RM, Caughy MO, Fox NA . Behavioral and physiologic effects of nonnutritive sucking during gavage feeding in preterm infants. Pediatr Res 1994; 36: 207–214.

    Article  CAS  PubMed  Google Scholar 

  177. South MM, Strauss RA, South AP, Boggess JF, Thorp JM . The use of non-nutritive sucking to decrease the physiologic pain response during neonatal circumcision: a randomized clinical trial. Am J Ob Gyn 2005; 193: 537–542.

    Article  Google Scholar 

  178. Pinelli J, Symington A . Non-nutritive sucking for promoting physiologic stability and nutrition in preterm infants. Cochrane Database Syst Rev 2005; 4: CD001071 (Available at: http://www.nichd.nih.gov/cochrane/pinelli/pinelli.htm).

    Google Scholar 

  179. Premji SS, Paes B . Gastrointestinal function and growth in premature infants: is non-nutritive sucking vital? J Perinatol 2000; 20: 46–53.

    Article  CAS  PubMed  Google Scholar 

  180. Pinelli J, Symington A, Ciliska D . Nonnutritive sucking in high-risk infants: benign intervention or legitimate therapy? J Obstet Gynecol Neonatal Nurs 2002; 31: 582–591.

    Article  PubMed  Google Scholar 

  181. Benis MM . Are pacifiers associated with early weaning from breastfeeding? Adv Neonatal Care 2002; 2: 259–266.

    PubMed  Google Scholar 

  182. Mainous RO . Infant massage as a component of developmental care: past, present, and future. Holistic Nurs Pract 2002; 16: 1–7.

    Article  Google Scholar 

  183. Gorski PA, Huntington L, Lewkowicz D . Handling preterm infants in hospitals. Controversy about timing of stimulation. Clin Perinatol 1990; 17: 103–112.

    Article  CAS  PubMed  Google Scholar 

  184. Harrison LL . The use of comforting touch and massage to reduce stress in preterm infants in the neonatal intensive care unit. Newborn Inf Nurs Rev 2001; 11: 235–241.

    Article  Google Scholar 

  185. White-Traut RC, Nelson MN, Burns K, Cunningham N . Environmental influences on the developing premature infant: theoretical issues and applications to practice. J Obstet Gynecol Neonatal Nurs 1994; 23: 393–401.

    Article  CAS  PubMed  Google Scholar 

  186. Mathai S, Fernandez A, Mondkar J, Kanbur W . Effects of tactile-kinesthetic stimulation in preterms: a controlled trial. Indian Pediatr 2001; 38: 1091–1098.

    CAS  PubMed  Google Scholar 

  187. Field T, Schanberg S, Scafidi F, Bauer C, Vega-Lahr N, Garcia R et al. Tactile/kinesthetic stimulation effects on preterm neonates. Pediatr 1986; 77: 654–658.

    CAS  Google Scholar 

  188. Dieter JN, Field T, Hernandez-Reif M, Emory EK, Redzepi M . Stable preterm infants gain more weight and sleep less after five days of massage therapy. J Pediatr Psychol 2003; 28: 403–411.

    Article  PubMed  Google Scholar 

  189. Ferber SG, Kuint J, Weller A, Feldman R, Dollberg S, Arbel E et al. Massage therapy by mothers and trained professionals enhance weight gain in preterm infants. Early Hum Dev 2002; 67: 37–45.

    Article  PubMed  Google Scholar 

  190. Wheeden A, Scafidi FA, Field T, Ironson G, Valdeon C, Bandstra E . Massage effects on cocaine-exposed preterm neonates. J Dev Behav Pediatr 1993; 14: 318–322.

    Article  CAS  PubMed  Google Scholar 

  191. Scafidi FA, Field T, Schanberg SM . Factors that predict which preterm infants benefit most from massage therapy. J Dev Behav Pediatr 1993; 14: 176–180.

    Article  CAS  PubMed  Google Scholar 

  192. Scafidi FA, Field TM, Schanberg SM, Bauer CR, Tucci K et al. Massage stimulates growth in preterm infants: a replication. Inf Behav Dev 1990; 13: 167–188.

    Article  Google Scholar 

  193. Agarwal K, Gupta A, Pushkarna R, Bhargava S, Farida M, Prabhuy M . Effects of massage and use of oil on growth, blood flow and sleep pattern in infants. Indian J Med Res 2000; 112: 212–217.

    CAS  PubMed  Google Scholar 

  194. Arora J, Kumar A, Ramji S . Effect of oil massage on growth and neurobehavior in very low birth weight preterm neonates. Indian Pediatr 2005; 42: 1092–1100.

    PubMed  Google Scholar 

  195. Rausch PB . Effects of tactile and kinesthetic stimulation on premature infants. J Obstet Gynecol Neonatal Nurs 1981; 10: 34–37.

    CAS  Google Scholar 

  196. Diego MA, Field T, Hernandez-Reif M . Vagal activity, gastric motility, and weight gain in massaged preterm neonates. J Pediatr 2005; 147: 50–55.

    Article  PubMed  Google Scholar 

  197. Lee HK . The effect of infant massage on weight gain, physiological and behavioral responses in premature infants. Taehan Kanho Hakhoe Chi 2005; 35: 1451–1460.

    PubMed  Google Scholar 

  198. Helders PJ, Cats BP, van der Net J, Debast SB . The effects of a tactile stimulation/range-finding programme on the development of very low birth weight infants during initial hospitalization. Child Care Health Dev 1988; 14: 341–354.

    Article  CAS  PubMed  Google Scholar 

  199. Solkoff N, Matuszak D . Tactile stimulation and behavioral development among low birthweight infants. Child Psychiatry Human Dev 1975; 6: 33–37.

    Article  CAS  Google Scholar 

  200. Rose S, Schmidt K, Riese M, Bridger W . Effects of prematurity and early intervention on responsivity to tactual stimulation: a comparison of preterm and full-term infants. Child Dev 1980; 51: 416–425.

    Article  CAS  PubMed  Google Scholar 

  201. Kuhn C, Schanberg S, Field T, Symanski R, Zimmerman E et al. Tactile-kinesthetic stimulation effects on sympathetic and adrenocortical function in preterm infants. J Pediatr 1991; 119: 434–440.

    Article  CAS  PubMed  Google Scholar 

  202. Aly H, Moustafa MF, Hassanein SM, Massaro AN, Amer HA, Patel K . Physical activity combined with massage improves bone mineralization in premature infants: a randomized clinical trial. J Perinatol 2004; 24: 305–309.

    Article  PubMed  Google Scholar 

  203. Harrison LL, Williams AK, Berbaum ML, Stem JT, Leeper J . Physiologic and behavioral effects of gentle human touch on preterm infants. Res Nurs Health 2000; 23: 435–446.

    Article  CAS  PubMed  Google Scholar 

  204. Harrison LL, Williams AK, Leeper J, Stem JT, Wang L . Factors associated with vagal tone responses in preterm infants. West J Nurs Res 2000; 22: 776–795.

    Article  CAS  PubMed  Google Scholar 

  205. Modrcin-Talbott MA, Harrison LL, Groer MW, Younger MS . The biobehavioral effects of gentle human touch on preterm infants. Nurs Sci Q 2003; 16: 60–67.

    Article  PubMed  Google Scholar 

  206. Vickers A, Ohlsson A, Lacy J, Horsley A . Massage for promoting growth and development of preterm and/or low birth-weight infants. Cochrane Database Syst Rev 2004; 4: CD000390. (Available at: http://www.nichd.nih.gov/cochrane/vickers/vickers.htm).

    Google Scholar 

  207. Ottenbacher KJ, Muller L, Brandt D, Heintzelman A, Hojem P, Sharpe P . The effectiveness of tactile stimulation as a form of early intervention: a quantitative evaluation. J Dev Behav Pediatr 1987; 8: 68–76.

    Article  CAS  PubMed  Google Scholar 

  208. Glover V, Onozawa K, Hodgkinson A . Benefits of infant massage for mothers with postnatal depression. Semin Neonatol 2002; 7: 495–500.

    Article  PubMed  Google Scholar 

  209. Charpak N, Ruiz-Pelaez JG, Charpak Y, Rey-Martinez Y . Kangaroo mother program: an alternative way of caring for low birth weight infants? One year mortality in a two cohort study. Pediatrics 1994; 94: 804–810.

    CAS  PubMed  Google Scholar 

  210. Colonna F, Uxa F, da Graca AM, da Graca AM, de Vonderweld U . The ‘kangaroo mother’ method: evaluation of an alternative model for the care of low birth weight newborns in developing countries. Int J Gynaecol Obstet 1990; 31: 335–339.

    Article  CAS  PubMed  Google Scholar 

  211. Bohnhorst B, Heyne T, Peter C, Poets C . Skin-to-skin (kangaroo) care, respiratory control, and thermoregulation. J Pediatr 2001; 138: 193–197.

    Article  CAS  PubMed  Google Scholar 

  212. Conde-Agudelo A, Diaz-Rossello JL, Belizan JM . Kangaroo mother care to reduce morbidity and mortality in low birthweight infants. Cochrane Database Syst Rev 2003; 4: CD002771 (Available at: http://www.nichd.nih.gov/cochrane/conde-agudelo/conde-agudelo.htm).

    Google Scholar 

  213. Ludington-Hoe SM, Swinth JY . Developmental aspects of kangaroo care. J Obstet Gynecol Neonatal Nurs 1996; 25: 691–703.

    Article  CAS  PubMed  Google Scholar 

  214. Ferber SG, Makhoul I . The effect of skin-to-skin contact (kangaroo care) shortly after birth on the neurobehavioral responses of the term newborn: a randomized, controlled trial. Pediatrics 2004; 113: 858–865.

    Article  PubMed  Google Scholar 

  215. Charpak N, Ruiz-Pelaez JG, Figueroa de CZ, Charpak Y . Kangaroo mother versus traditional care for newborn infants ⩽2000 grams: a randomized, controlled trial. Pediatrics 1997; 100: 682–688.

    Article  CAS  PubMed  Google Scholar 

  216. Ludington-Hoe SM, Anderson GC, Swinth JY, Thompson C, Hadeed AJ . Randomized controlled trial of kangaroo care: cardiorespiratory and thermal effects on healthy preterm infants. Neonatal Netw 2004; 23: 39–48.

    Article  PubMed  Google Scholar 

  217. Feldman R, Eidelman AI . Skin-to-skin contact (kangaroo Care) accelerates autonomic and neurobehavioral maturation in preterm infants. Dev Med Child Neuro 2003; 45: 274–281.

    Article  Google Scholar 

  218. Feldman R, Weller A, Sirota L, Eidelman AI . Skin-to-Skin contact (Kangaroo care) promotes self-regulation in premature infants: sleep-wake cyclicity, arousal modulation, and sustained exploration. Dev Psychol 2002; 38: 194–207.

    Article  PubMed  Google Scholar 

  219. Feldman R, Eidelman A, Sirota L, Weller A . Comparison of skin-to-skin (kangaroo) and traditional care: parenting outcomes and preterm infant development. Pediatrics 2002; 110: 16–26.

    Article  PubMed  Google Scholar 

  220. Dodd VL . Implications of kangaroo care for growth and development in preterm infants. J Obstet Gynecol Neonatal Nurs 2005; 34: 218–232.

    Article  PubMed  Google Scholar 

  221. Fohe K, Kropf S, Avenarius S . Skin-to-skin contact improves gas exchange in premature infants. J Perinatol 2000; 20: 311–315.

    Article  CAS  PubMed  Google Scholar 

  222. Chwo MJ, Anderson GC, Good M, Dowling DA, Shiau SH, Chu DM . A randomized controlled trial of early kangaroo care for preterm infants: effects on temperature, weight, behavior, and acuity. J Nurs Res 2002; 10: 129–142.

    Article  PubMed  Google Scholar 

  223. Morelius E, Theodorsson E, Nelson N . Salivary cortisol and mood and pain profiles during skin-to-skin care for an unselected group of mothers and infants in neonatal intensive care. Pediatr 2005; 116: 1105–1113.

    Article  Google Scholar 

  224. Gitau R, Modi N, Gianakoulopoulos X, Bond C et al. Acute effects of maternal skin-to-skin contact and massage on saliva cortisol in preterm babies. J Rep Infant Psych 2002; 20: 83–88.

    Article  Google Scholar 

  225. Ludington-Hoe S, Johnson M, Lewis T, Gutman J, Wilson D, Scher M . Neurophysiologic assessment of neonatal sleep organization: preliminary results of a randomized, controlled trial of skin contact with preterm infants. Pediatrics 2006; 117: e909–e923. (Available at: http://pediatrics.aappublications.org/cgi/content/abstract/117/5/e909).

    Article  PubMed  Google Scholar 

  226. Venancio SI, de Almeida H . Kangaroo-mother care: scientific evidence and impact on breastfeeding. J Pediatr (Rio J) 2004; 80: S173–S180.

    Article  Google Scholar 

  227. Roberts KL, Paynter C, McEwan B . A comparison of kangaroo mother care and conventional cuddling care. Neonatal Netw 2000; 19: 31–35.

    Article  CAS  PubMed  Google Scholar 

  228. Feldman R, Weller A, Sirota L, Eidelman AI . Testing a family intervention hypothesis: the contribution of mother-infant skin-to-skin contact (kangaroo care) to family interaction, proximity, and touch. J Fam Psychol 2003; 17: 94–107.

    Article  PubMed  Google Scholar 

  229. Cattaneo A, Davanzo R, Worku B, Surjono A, Echeverria M, Bedri A et al. Kangaroo mother care for low birthweight infants: a randomized controlled trial in different settings. Acta Paediatr 1998; 87: 976–985.

    Article  CAS  PubMed  Google Scholar 

  230. Worku B, Kassie A . Kangaroo mother care: a randomized controlled trial on effectiveness of early kangaroo mother care for the low birthweight infants in Addis Ababa, Ethiopia. J Trop Pediatr 2005; 51: 93–97.

    Article  PubMed  Google Scholar 

  231. Tessier R, Cristo MB, Velez S, Giron M, Nadeau L, Figueroa de Lalume Z et al. Kangaroo mother care: a method for protecting high-risk low-birth-weight and premature infants against developmental delay. Infant Behav Dev 2003; 26: 384–397.

    Article  Google Scholar 

  232. Ohgi S, Fukuda M, Moriuchi H, Kusumoto T, Akiyama T, Nugent JK et al. Comparison of kangaroo care and standard care: behavioral organization, development, and temperament in healthy, low-birth-weight infants through 1 year. J Perinatol 2002; 22: 374–379.

    Article  PubMed  Google Scholar 

  233. Miles R, Cowan F, Glover V, Stevenson J, Modi N . A controlled trial of skin-to-skin contact in extremely preterm infants. Early Hum Dev 2006; 82: 447–455.

    Article  PubMed  Google Scholar 

  234. Charpak N, Ruiz-Pelaez JG, Figueroa de CZ, Charpak Y . A randomized, controlled trial of kangaroo mother care: results of follow-up at 1 year of corrected age. Pediatr 2001; 108: 1072–1079.

    Article  CAS  Google Scholar 

  235. Fitzgerald M . Pain and analgesia in neonates. Trends Neurosci 1987; 10: 344–346.

    Article  Google Scholar 

  236. International Association for the Study of Pain. IASP Pain Terminology. 2004. (Available at: http://www.iasp-pain.org/terms-p.html).

  237. Klimach VJ, Cooke RW . Maturation of the neonatal somatosensory evoked response in preterm infants. Dev Med Child Neurol 1988; 30: 208–214.

    Article  CAS  PubMed  Google Scholar 

  238. Lee SJ, Ralston HJ, Drey EA, Partridge JC, Rosen MA . Fetal pain. A systematic multidisciplinary review of the evidence. JAMA 2005; 294: 947–954.

    Article  CAS  PubMed  Google Scholar 

  239. Anand KJ . Consensus statement for the prevention and management of pain in the newborn. Arch Pediatr Adolesc Med 2003; 157: 1058–1064.

    Article  PubMed  Google Scholar 

  240. Anand KJ . Clinical importance of pain and stress in preterm neonates. Biol Neonate 1998; 73: 1–9.

    Article  CAS  PubMed  Google Scholar 

  241. Anand KJ, Scalzo FM . Can adverse neonatal experiences alter brain development and subsequent behavior? Boil Neonate 2000; 77: 69–82.

    Article  CAS  Google Scholar 

  242. Anand KJ, Carr DB . The neuroanatomy, neurophysiology and neurochemistry of pain, stress and analgesia in newborns and children. Pediatr Clin North Am 1989; 36: 795–822.

    Article  CAS  PubMed  Google Scholar 

  243. Anand KJ, Phil D, Granau R, Oberlander T . Developmental character and long-term consequences of pain in infants and children. Child and Adolescent Psych Clin North Am 1997; 6: 703–724.

    Article  Google Scholar 

  244. Anand KJ, Phil D, Hickey PR . Pain and its effects in the human neonate and fetus. N Engl J Med 1987; 317: 1321–1329.

    Article  CAS  PubMed  Google Scholar 

  245. Porter FL, Grunaue RE, Anand KJ . Long-term effects of pain in infants. J Dev Behav Pediatr 1999; 20: 253–261.

    Article  CAS  PubMed  Google Scholar 

  246. Berry FA, Gregory GA . Do premature infants require anesthesia for surgery? Anesthesiology 1987; 67: 291–293.

    Article  CAS  PubMed  Google Scholar 

  247. Craig KD, Whitfield MF, Grunau RV, Linton J, Hadjistavropoulos HD . Pain in the preterm neonate: behavioral and physiological indices. Pain 1993; 52: 287–299.

    Article  CAS  PubMed  Google Scholar 

  248. Fitzgerald M . Pain and analgesia in neonates. Trends Neurosci 1987; 10: 344–346.

    Article  Google Scholar 

  249. Fitzgerald M . Development of pain mechanisms. Br Med Bull 1991; 47: 667–675.

    Article  CAS  PubMed  Google Scholar 

  250. Maroney DI . Recognizing the potential effect of stress and trauma on premature infants in the NICU: how are outcomes affected? J Perinatol 2003; 23: 679–683.

    Article  PubMed  Google Scholar 

  251. Taddio A, Shah V, Gilbert-MacLeod C, Katz J . Conditioning and hyperalgesia in newborns exposed to repeated heel lances. JAMA 2002; 288: 857–861.

    Article  PubMed  Google Scholar 

  252. Buskila D, Neumann L, Zmora E, Feldman M, Bolotin AM, Press J . Pain sensitivity in prematurely born adolescents. Arch Pediatr Adolesc Med 2003; 157: 1079–1082.

    Article  PubMed  Google Scholar 

  253. Franck LS, Miaskowski C . Measurement of neonatal response to painful stimuli: a research review. J Pain Sym Mngmnt 1997; 14: 343–378.

    Article  CAS  Google Scholar 

  254. Grunau RV, Johnston CC, Craig KD . Neonatal facial and cry responses to invasive and non-invasive procedures. Pain 1990; 42: 295–305.

    Article  CAS  PubMed  Google Scholar 

  255. Humphrey T . Some correlations between the appearance of human fetal reflexes and the development of the nervous system. Prog Brain Res 1964; 4: 93–135.

    Article  Google Scholar 

  256. Johnston C, Stevens B . Experience in a neonatal intensive care unit affects pain response. Pediatrics 1996; 98: 925–930.

    CAS  PubMed  Google Scholar 

  257. American Academy of Pediatrics. Committee on Fetus and Newborn. Prevention and management of pain in the neonate: an update. Pediatrics 2006; 5: 2231–2241.

    Article  Google Scholar 

  258. Barker DP, Rutter N . Stress, severity of illness, and outcome in ventilated preterm infants. Arch Dis Child 1996; 75: F187–F190.

    Article  CAS  Google Scholar 

  259. Wood CM, Rushforth JA, Hartley R, Dean H, Wild J, Levene MI . Randomised double blind trial of morphine versus diamorphine used for the sedation of ventilated preterm neonates. Arch Dis Child 1998; 79: F34–F39.

    Article  CAS  Google Scholar 

  260. Quinn MW, Wild J, Dean HG et al. Randomised double-blind controlled trial of effect of morphine on catecholamine concentrations in ventilated pre-term babies. Lancet 1993; 342: 324–327.

    Article  CAS  PubMed  Google Scholar 

  261. Aranda JV, Carlo W, Hummel P, Thomas R, Lehr VT, Anand KJ . Analgesia and sedation during mechanical ventilation in neonates. Clin Ther 2005; 27: 877–899.

    Article  CAS  PubMed  Google Scholar 

  262. Ng E, Taddio A, Ohlsson A . Intravenous midazolam infusion for sedation of infants in the neonatal intensive care unit. Cohcrane Database Syst Rev 2006; (4): CD002052. (Available at: http://www.nichd.nih.gov/cochrane/ng2/ng2.htm).

  263. Simons SH, van Dijk M, van Lingen RA et al. Routine morphine infusion in preterm newborns who received ventilatory support: a randomized controlled trial. JAMA 2003; 290: 2419–2427.

    Article  CAS  PubMed  Google Scholar 

  264. Anand KJ, Hall RW, Desai N et al. Effects of morphine analgesia in ventilated preterm neonates: primary outcomes from the NEOPAIN randomized trial. Lancet 2004; 363: 1673–1682.

    Article  CAS  PubMed  Google Scholar 

  265. Carbajal R, Lenclen R, Jugie M, Paupe A, Barton BA, Anand KJ . Morphine does not provide adequate analgesia for acute procedural pain among preterm neonates. Pediatrics 2005; 115: 1494–1500.

    Article  PubMed  Google Scholar 

  266. Okada Y, Powis M, McEwan A, Pierro A . Fentanyl analgesia increases the incidence of postoperative hypothermia in neonates. Pediatr Surg Int 1998; 13: 508–511.

    Article  CAS  PubMed  Google Scholar 

  267. Franck IS, Vilaardi J, Durand D, Powers R . Opioid withdrawal in neonates after continuous infusions of morphine or fentanyl during extracorporeal membrane oxygenation. Am J Crit Care 1998; 7: 364–369.

    CAS  PubMed  Google Scholar 

  268. Hall R, Kronsberg SS, Barton BA, Kaiser JR, Anand KJS . Morphine, hypotension, and adverse outcomes among preterm neonates: who's to blame? Secondary results from the NEOPAIN trail. Pediatrics 2005; 115: 1351–1359.

    Article  PubMed  Google Scholar 

  269. Bhandari V, Bergqvist L, Kronsberg S, Barton BA, Anand KJ . NEOPAIN Trial Investigators Group: morphine administration and short-term pulmonary outcomes among ventilated preterm infants. Pediatrics 2005; 116: 352–359.

    Article  PubMed  Google Scholar 

  270. Vohr BR, Wright LL, Dusick AM, Mele L, Verter J et al. Neurodevelopmental and functional outcomes of extremely low birth weight infants in the National Institute of Child Health and Human Development Neonatal Research Network, 1993-1994. Pediatrics 2000; 105: 1216–1226.

    Article  CAS  PubMed  Google Scholar 

  271. Laptook AR, O'Shea TM, Shankaran S, Bhaskar B, the NICHD Neonatal Network. Adverse neurodevelopmental outcomes among extremely low birth weight infants with a normal head ultrasound: prevalence and antecedents. Pediatrics 2005; 115: 673–680.

    Article  PubMed  Google Scholar 

  272. MacGregor R, Evans D, Sugden D, Gaussen T, Levene M . Outcome at 5–6 years of prematurely born children who received morphine as neonates. Arch Dis Child Fetal Neonatal Ed 1998; 79: F40–F43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Aly H . Preemptive strike in the war on pain: is it a safe strategy for our vulnerable infants? Pediatrics 2004; 114: 1335–1337.

    Article  PubMed  Google Scholar 

  274. Hu S, Sheng WS, Lokensgard JR, Peterson PK . Morphine induces apoptosis of human microglial and neurons. Neuropharmacology 2002; 42: 829–836.

    Article  CAS  PubMed  Google Scholar 

  275. Zagan IS, McLaughlin PJ . Opioid antagonist-induced modulation of cerebral and hippocampal development: histological and morphometric studies. Dev Brain Res 1986; 28: 233–246.

    Article  Google Scholar 

  276. Scatriz JV, Hammer RP . Effects of opiates on neuronal development in the rat cerebral cortex. Brain Res Bull 1993; 30: 523–527.

    Article  Google Scholar 

  277. Hammer RP et al. effects of opiates on brain development. Neurotoxicology 1989; 10: 475–484.

    CAS  PubMed  Google Scholar 

  278. Hauser KF, McLaughlin PJ, Zagon IS . Endogenous opioids regulate dendritic growth and spine formation in developing rat brain. Brain Res 1987; 416: 157–161.

    Article  CAS  PubMed  Google Scholar 

  279. Ricalde AA, Hammer RP . Perinatal opiate treatment delays growth of cortical dendrites. Neurosci Lett 1990; 115: 137–143.

    Article  CAS  PubMed  Google Scholar 

  280. Shaw IR, Lavigne G, Mayer P, Choinier M . Acute intravenous administration of morphine perturbs sleep architecture in healthy pain-free young adults: a preliminary study. Sleep 2005; 28: 677–682.

    Article  PubMed  Google Scholar 

  281. Shinomiya K, Shigemoto Y, Omichi J, Utsu Y, Mio M, Kamei C . Effects of three hypnotics on the sleep-wakefulness cycle in sleep disturbed rats. Psychopharmacology 2004; 173: 203–209.

    Article  CAS  PubMed  Google Scholar 

  282. Bell AH, Greisen G, Pryds O . Comparison of the effects of phenobarbitone and morphine administration on EEG activity in preterm babies. Acta Paediatr 1993; 82: 35–39.

    Article  CAS  PubMed  Google Scholar 

  283. Young GB, da Silva OP . Effects of morphine on the electroencephalogram of neonates: a prospective, observational study. Clin Neurophysiol 2000; 111: 1955–1960.

    Article  CAS  PubMed  Google Scholar 

  284. Schaal B, Hummel T, Soussignan R . Olfaction in the fetal and premature infant: functional status and clinical implications. Clin Perinatol 2004; 31: 261–285.

    Article  PubMed  Google Scholar 

  285. Schaal B, Marlier L, Soussignan R . Olfactory function in the human fetus: evidence from selective neonatal responsiveness to the odor of amniotic fluid. Behav Neurosci 1998; 112: 1438–1449.

    Article  CAS  PubMed  Google Scholar 

  286. Lecanuet J, Schaal B . Fetal sensory competencies. Eur J Obstet Gynecol Reprod Biol 1996; 68: 1–23.

    Article  CAS  PubMed  Google Scholar 

  287. Marlier L, Schaal B, Soussignan R . Bottle-fed neonates prefer an odor experienced in utero to an odor experienced postnatally in the feeding context. Dev Psychobiol 1998; 33: 133–145.

    Article  CAS  PubMed  Google Scholar 

  288. Marlier L, Schaal B, Soussignan R . Neonatal responsiveness to the odor of amniotic and lacteal fluids: a test of perinatal chemosensory continuity. Child Dev 1998; 69: 611–623.

    Article  CAS  PubMed  Google Scholar 

  289. Varendi H, Porter RH, Winberg J . Attractiveness of amniotic fluid odor: evidence of prenatal olfactory learning? Acta Paediatr 1996; 85: 1223–1227.

    Article  CAS  PubMed  Google Scholar 

  290. Varendi H, Porter RH, Winberg J . Does the newborn baby find the nipple by smell? Lancet 1994; 344: 989–990.

    Article  CAS  PubMed  Google Scholar 

  291. Cernoch JM, Porter RH . Recognition of maternal axillary odors by infants. Child Dev 1985; 56: 1593–1598.

    Article  CAS  PubMed  Google Scholar 

  292. Makin JW, Porter RH . Attractiveness of lactating females' breast odors to neonates. Child Dev 1989; 60: 803–810.

    Article  CAS  PubMed  Google Scholar 

  293. Marlier L, Schaal B . Human newborns prefer human milk: conspecific milk odor is attractive without postnatal exposure. Child Dev 2005; 76: 155–168.

    Article  PubMed  Google Scholar 

  294. Porter RH, Makin JW, Davis LB, Christensen KM . An assessment of the salient olfactory environment of formula-fed infants. Physiol Behav 1991; 50: 907–911.

    Article  CAS  PubMed  Google Scholar 

  295. Mizuno K, Ueda A . Antenatal olfactory learning influences infant feeding. Early Hum Dev 2004; 76: 83–90.

    Article  PubMed  Google Scholar 

  296. Sullivan RM, Taborsky-Barba S, Mendoza R, Itano A, Leon M, Cotman CW et al. Olfactory classical conditioning in neonates. Pediatrics 1991; 87: 511–518.

    CAS  PubMed  Google Scholar 

  297. Macfarlane A . Olfaction in the development of social preferences in the human neonate. Ciba Found Symp 1975; 33: 103–117.

    Google Scholar 

  298. Porter RH . Olfaction and human kin recognition. Genetica 1998-99; 104: 259–263.

    Article  PubMed  Google Scholar 

  299. Schaal B, Marlier L, Soussignan R . Human foetuses learn odours from their pregnant mother's diet. Chem Senses 2000; 25: 729–737.

    Article  CAS  PubMed  Google Scholar 

  300. Varendi H, Porter RH, Winberg J . Natural odour preferences of newborn infants change over time. Acta Paediatr 1997; 86: 985–990.

    Article  CAS  PubMed  Google Scholar 

  301. Bingham PM, Abassi S, Sivieri E . A pilot study of milk odor effect on nonnutritive sucking by premature newborns. Arch Peidatr Adolesc med 2003; 157: 72–75.

    Article  Google Scholar 

  302. Sullivan R, Toubas P . Clinical usefulness of maternal odor in newborns: soothing and feeding preparatory responses. Biol Neonate 1998; 74: 402–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Rattaz C, Goubet N, Bullinger A . The calming effect of a familiar odor on full-term newborns. J Dev Behav Pediatr 2005; 26: 86–92.

    Article  PubMed  Google Scholar 

  304. Goubet N, Rattaz C, Pierrat V, Bullinger A, Lequien P . Olfactory experience mediates response to pain in preterm newborns. Dev Psychobiol 2003; 42: 171–180.

    Article  PubMed  Google Scholar 

  305. Varendi H, Christensson K, Porter RH, Winberg J . Soothing effect of amniotic fluid smell in newborn infants. Early Human Dev 1998; 51: 47–55.

    Article  CAS  Google Scholar 

  306. Smotherman W, Robinson S, La Vallee P, Hennessy M . Influences of the early olfactory environment on the survival, behavior and pituitary-adrenal activity of cesarean delivered preterm rat pups. Dev Psychobiol 1987; 20: 415–423.

    Article  CAS  PubMed  Google Scholar 

  307. Marlier L, Schaal B, Gaugler C, Messer J . Olfaction in premature human newborns: detection and discrimination abilities two months before gestational term. Chemical Signals Vertebr 2001; 9: 205–209.

    Article  Google Scholar 

  308. Bartocci M, Winberg J, Papendieck G, Mustica T, Serra G, Lagercrantz H . Cerebral hemodynamic response to unpleasant odors in the preterm newborn measured by near-infrared spectroscopy. Pediatr Res 2001; 50: 324–330.

    Article  CAS  PubMed  Google Scholar 

  309. Bartocci M, Winberg J, Ruggierro C, Berqvist LL, Serra G, Lagercrantz H . Activation of olfactory cortex in newborn infants after odor stimulation: a functional near-infrared spectroscopy study. Pediatr Res 2000; 48: 18–23.

    Article  CAS  PubMed  Google Scholar 

  310. Schwartz GE, Whitehorn D, Hernon JC, Jones M . Subjective and respiratory differentiation of fragrances: interactions with hedonics. Psycholphysiol 1986; 23: 460.

    Google Scholar 

  311. VanReempts PJ, Wouters A, DeCock W, VanAcker KJ . Stress responses to tilting and odor stimulus in preterm neonates after intrauterine conditions associated with chronic stress. Physiol Behav 1997; 61: 419–424.

    Article  CAS  Google Scholar 

  312. Marlier L, Gaugler C, Messer J . Olfactory stimulation prevents apnea in premature newborns. Pediatr 2005; 115: 83–88.

    Article  Google Scholar 

  313. Marlier L, Gaugler C, Soussignan R, Schaal B, Messer J . Premature newborns differentiate the affective value of odours during sleep. J Matern Fetal Neonatal Med 2002; 11 (Suppl): 64.

    Google Scholar 

  314. Starr A, Amlie RN, Martin WH, Sanders S . Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics 1977; 60: 831–839.

    CAS  PubMed  Google Scholar 

  315. Weitzman ED, Graziani LJ . Maturation and topography of the auditory evoked response of the prematurely born infant. Devel Psychobiol 1968; 1: 79–89.

    Article  Google Scholar 

  316. Wedenberg E . Prenatal tests of hearing. Acta Oto-Laryngology 1965; 206: 27–32.

    Google Scholar 

  317. Shahidullah S, Hepper PG . The developmental origins of fetal responsiveness to an acoustic stimulus. J Reprod Infant Psych 1993; 11: 135–142.

    Article  Google Scholar 

  318. Gerhardt KJ, Abrams RM, Oliver CC . Sound environment of the fetal sheep. Am J Obstet Gynecol 1990; 162: 282–287.

    Article  CAS  PubMed  Google Scholar 

  319. Gerhardt KJ . Chartacteristics of the fetal sheep sound environment. Semin Perinatol 1989; 13: 362–370.

    CAS  PubMed  Google Scholar 

  320. Querleu D, Renard X, Boutteville C, Crepin G . Hearing by the human fetus? Semin Perintatol 1989; 13: 409–420.

    CAS  Google Scholar 

  321. Richards DS, Frentzen B, Gerhardt KJ et al. Sound levels in the human uterus. Obstet Gynecol 1992; 80: 186–190.

    CAS  PubMed  Google Scholar 

  322. Vince MA, Armitage SE, Baldwin BA, Toner J . The sound environment of foetal sheep. Behaviour 1982; 81: 296–315.

    Article  Google Scholar 

  323. Gerhardt KJ, Abrams RM . Fetal exposures to sound and vibroacoustic stimulation. J Perinatol 2000; 20: S21–S30.

    Article  CAS  PubMed  Google Scholar 

  324. Gerhardt KJ, Pierson LL, Huang X, Abrams RM, Rarey KE . Effects of intense noise exposure on fetal sheep auditory brain stem response and inner ear histology. Ear Hear 1999; 20: 21–32.

    Article  CAS  PubMed  Google Scholar 

  325. Huang X, Gerhardt KJ, Abrams RM, Antonelli PJ . Temporary threshold shifts induced by low-pass and high pass filtered noises in fetal sheep in utero. Hear Res 1997; 113: 173–181.

    Article  CAS  PubMed  Google Scholar 

  326. Pierson LL, Gerhardt KJ, Griffiths SL, Abrams RM . Auditory brainstem response in sheep. Part I: fetal development. Dev Psychobiol 1995; 28: 293–305.

    Article  CAS  PubMed  Google Scholar 

  327. National Institutes of Health. Noise and Hearing Loss. National Institutes of Health Consensus Report. U.S. Department of Health and Human Services: Bethesda, MD, 1990.

  328. Lalande NM, Hetu R, Lambert J . Is occupational noise exposure during pregnancy a risk factor of damage to the auditory system of the fetus? Am J Ind Med 1986; 10: 427–435.

    Article  CAS  PubMed  Google Scholar 

  329. Daniel T, Laciak J . Clinical observations and experiments concerning the condition of the cocleovestibular apparatus of subjects exposed to noise I fetal life. Rev Laryngol Otol Rhinol (Fr) 1982; 103: 313–318.

    CAS  Google Scholar 

  330. Abramovich SJ, Gregory S, Slemick M, Stewart A . Hearing loss in very low birth weight infants treated with neonatal intensive care. Arch Dis Child 1979; 54: 421–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Chang EF, Merzenich MM . Environmental noise retards auditory cortical development. Science 2003; 300: 498–502.

    Article  CAS  PubMed  Google Scholar 

  332. Blennow G, Svenningsen NW, Almquist B . Noise levels in infant incubators (adverse effects?). Pediatrics 1974; 53: 29–31.

    CAS  PubMed  Google Scholar 

  333. Ciesielski S, Kopka J, Kidawa B . Incubator noise and vibration: possible iatrogenic influence on the neonate. Int J Pediatr Otorhinolaryngol 1980; 1: 309–316.

    Article  CAS  PubMed  Google Scholar 

  334. Bess FH, Peek BF, Chapman JJ . Further observations on noise levels in infant incubators. Pediatrics 1979; 63: 100–106.

    CAS  PubMed  Google Scholar 

  335. Seleny FL, Streczyn M . Noise characteristics in the baby compartment of incubators. Am J Dis Child 1969; 117: 445–450.

    Article  CAS  PubMed  Google Scholar 

  336. Long JG, Lucey JF, Phillip AGS . Noise and hypoxemia in the intensive care nursery. Pediatrics 1980; 65: 143–145.

    CAS  PubMed  Google Scholar 

  337. Anagnostakis D, Petmezakis J, Messaritakis J et al. Noise pollution in neonatal units: a potential hazard. Acta Pediatr Scand 1980; 69: 771–773.

    Article  CAS  Google Scholar 

  338. Gottfried AW . Environment of newborn infants in special care units. In: Gottfried AW, Gaiter JL (eds). Infant Stress Under Intensive Care: Environmental Neonatology. University Park Press: Baltimore, 1985, pp 23–54.

    Google Scholar 

  339. Philbin MK . The influence of auditory experience on the behavior of preterm newborns. J Perinatol 2000; 20: S77–S87.

    Article  CAS  PubMed  Google Scholar 

  340. Walsh-Sukys M, Reitenback A, Hudson-Barr D, DePompei P . Reducing light and sound in the neonatal intensive care unit: an evaluation of patient safety, staff satisfaction and costs. J Perinatol 2001; 21: 230–235.

    Article  CAS  PubMed  Google Scholar 

  341. Robertson A, Kohn J, Vos P, Cooper-Peel C . Establishing a noise measurement protocol for neonatal intensive care units. J Perinatol 1998; 18: 126–130.

    CAS  PubMed  Google Scholar 

  342. Levy G, Woolston D, Browne J . Mean noise amounts in level II vs Level III neonatal intensive care units. Neonatal Network 2003; 22: 33–37.

    Article  PubMed  Google Scholar 

  343. Philbin MK, Gray L . Changing levels of quiet in an intensive care nursery. J Perinatol 2002; 22: 455–460.

    Article  PubMed  Google Scholar 

  344. White R, Martin GI (eds). New standards for newborn intensive care unit (NICU) design. J Perinatol 2006; 26: S1–S30.

    Article  Google Scholar 

  345. Morris BH, Philbin MK, Bose C . Physiologic effects of sound on the newborn. J Perinatol 2000; 20: S55–S60.

    Article  CAS  PubMed  Google Scholar 

  346. Wharrad HJ, Davis AC . Behavioural and autonomic responses to sound in pre-term and full-term babies. Br J Audiol 1997; 31: 315–329.

    Article  CAS  PubMed  Google Scholar 

  347. Steinschneider A, Lipton EL, Richmond JB . Auditory sensitivity in the infant: effect of intensity on cardiac and motor responsivity. Child Dev 1966; 37: 233–252.

    CAS  PubMed  Google Scholar 

  348. Bartoshuk AK . Human neonatal cardiac acceleration to sound: habituation and dishabituation. Percept Mot Skills 1962; 15: 15–27.

    Article  CAS  PubMed  Google Scholar 

  349. Ver Hoeve JN, Leavitt LA . Neonatal acoustically-elicited cardiac response: modulation by state and antecedent stimulation. Psychophysiology 1985; 22: 231–236.

    Article  CAS  PubMed  Google Scholar 

  350. Segall ME . Cardiac responsitivity to auditory stimulation in premature infants. Nurs Res 1972; 21: 15–19.

    CAS  PubMed  Google Scholar 

  351. Vranekovic G, Hock E, Isaac P, Cordero I . Heart rate variability and cardiac response to an auditory stimulus. Biol Neonate 1974; 24: 66–73.

    Article  CAS  PubMed  Google Scholar 

  352. Jurkovicova J, Aghova I . Evaluation of the effects of noise exposure on various body function in low birth weight newborns. Act Nerv Super 1989; 31: 228–229.

    CAS  Google Scholar 

  353. Steinschneider A . Sound intensity and respiratory responses in the neonate. Comparison with cardiac rate responses. Psychosom Med 1968; 30: 534–541.

    Article  CAS  PubMed  Google Scholar 

  354. Anderssen SH, Nicolaisen RB, Gabrielsen GW . Autonomic response to auditory stimulation. Acta Paediatr 1993; 82: 913–918.

    Article  CAS  PubMed  Google Scholar 

  355. Jensen MM, Rasmussen AF . Stress and susceptibility to viral infection: I response of adrenals, liver, thymus, spleen and peripheral leuckocyte counts to sound stress. J Immunol 1963; 93: 17–20.

    Google Scholar 

  356. Jensen MM, Rasmussen AF . Stress and susceptibility to viral infection: II. Sound stress and susceptibility to vesicular stomatitis virus. J Immunol 1963; 93: 21–23.

    Google Scholar 

  357. Field TM, Dempsey JR, Hatch J, Ting G, Clifton RK . Cardiac and behavioural responses to repeated tactile and auditory stimulation by pretermand term neonates. Dev Psychol 1979; 15: 406–416.

    Article  Google Scholar 

  358. Gerber SE, Lima CG, Copriviza KI . Auditory arousal in preterm infants. Scand Audiol Suppl 1982; 17: 88–93.

    Google Scholar 

  359. Gadeke R, Doring B, Keller F, Vogel A . Noise levels in a children's hospital and wake-up thresholds in infants. Acta Paediatr Scand 1969; 58: 164–170.

    Article  CAS  PubMed  Google Scholar 

  360. Miller CL, Byrne JM . Psychophysiologic and behavioral response to auditory stimuli in the newborn. Infant Behav Dev 1983; 6: 369–389.

    Article  Google Scholar 

  361. Zahr LK, de Traversay J . Premature infant responses to noise reduction by earmuffs: effects on behavioral and physiologic measures. J Perinatol 1996; 15: 448–455.

    Google Scholar 

  362. Zahr LK, Balian S . Responses of premature infants to routine nursing interventions and noise in the NICU. Nurs Res 1995; 44: 179–185.

    Article  CAS  PubMed  Google Scholar 

  363. Gray L, Philbin K . Effects of the neonatal intensive care unit on auditory attention and distraction. Clin Perinatol 2004; 31: 243–260.

    Article  PubMed  Google Scholar 

  364. Shepley MM . Evidence-based design for infants and staff in the neonatal intensive care unit. Clin Perinatol 2004; 31: 299–311.

    Article  PubMed  Google Scholar 

  365. Philbin MK . Planning the acoustic environment of a neonatal intensive care unit. Clin Perinatol 2004; 31: 331–352.

    Article  PubMed  Google Scholar 

  366. Graven S . Sound and the developing infant in the NICU: conclusions and recommendations for care. J Perinatol 2000; 20: S88–S93.

    Article  CAS  PubMed  Google Scholar 

  367. Johannson B, Wedenberg E, Westin B . Measurement of tone response by the human foetus. Acta Oto-larygnol 1964; 57: 188–192.

    Article  Google Scholar 

  368. Shahidullah S, Hepper PG . Frequency discrimination by the fetus. Early Hum Dev 1994; 36: 13–26.

    Article  CAS  PubMed  Google Scholar 

  369. Vince MA, Billing AE, Baldwin A et al. Maternal vocalizations and other sounds in the fetal lamb's sound environment. Early Hum Dev 1985; 11: 179–190.

    Article  CAS  PubMed  Google Scholar 

  370. Gerhardt KJ, Abrams RM . Fetal exposures to sound and vibroacoustic stimulation. J Perinatol 2000; 20: S31–S36.

    Article  PubMed  Google Scholar 

  371. Moon C, Fifer W . Evidence of trans-natal auditory learning. J Perinatol 2000; 20: S37–S44.

    Article  CAS  PubMed  Google Scholar 

  372. Ruben RJ . The ontogeny of human hearing. Acta Otolaryngol 1992; 112: 192–196.

    Article  CAS  PubMed  Google Scholar 

  373. Mehler J, Juszyk P, Lambertz G, Halsted N, Bertoncini J, Amiel-Tison C . A precursor of language acquisition in young infants. Cognition 1988; 29: 143–178.

    Article  CAS  PubMed  Google Scholar 

  374. Hepper PG, Scott D, Shahidullah S . Newborn and fetal response to maternal voice. J Reprod Inf Psych 1993; 11: 147–153.

    Article  Google Scholar 

  375. DeCasper AJ, Fifer WP . Of human bonding: newborns prefer their mothers' voices. Science 1980; 208: 1174–1176.

    Article  CAS  PubMed  Google Scholar 

  376. Spence MJ, DeCasper AJ . Prenatal experience with low-frequency maternal-voice sounds influence neonatal perception of maternal voice samples. Infant Behav Dev 1987; 10: 133–142.

    Article  Google Scholar 

  377. Fifer WP, Moon C . Psychobiology of newborn auditory preferences. Semin Perinatol 1989; 13: 430–433.

    CAS  PubMed  Google Scholar 

  378. Querleu D, Lefebvre C, Titran M, Renard X, Morillion M, Crepin G . Reaction of the newborn infant less than 2 h after birth to the maternal voice. J Gynecol Obstet Biol Reprod (Paris) 1984; 13: 125–134.

    CAS  Google Scholar 

  379. DeCasper AJ, Lecanuet JP, Busnel MC, Granier-Deferre C, Maugeais C . Fetal reactions to recurrent maternal speech. Infant Behav Dev 1994; 17: 159–164.

    Article  Google Scholar 

  380. DeCasper AJ, Spence MJ . Prenatal maternal speech influences newborns' perception of speech sounds. Infant Behav Develop 1986; 9: 133–150.

    Article  Google Scholar 

  381. Graven SN . Early neurosensory visual development of the fetus and newborn. Clin Perinatol 2004; 31: 199–216.

    Article  PubMed  Google Scholar 

  382. Weliky M, Katz LC . Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature 1997; 386: 680–685.

    Article  CAS  PubMed  Google Scholar 

  383. Robinson J, Moseley MJ, Fielder AR . Illuminance of neonatal units. Am J Dis Child 1990; 65: 679–682.

    Article  CAS  Google Scholar 

  384. Robinson J, Fielder AR . Light and the neonatal eye. Behav Brain Res 1992; 49: 51–55.

    Article  CAS  PubMed  Google Scholar 

  385. Bullough J, Rea MS, Stevens RG . Light and magnetic fields in a neonatal intensive care unit. Bioelectromagnetics 1996; 17: 396–405.

    Article  CAS  PubMed  Google Scholar 

  386. Figueiro MG, Appleman K, Bullough JD, Rea MS . A discussion of recommended standards for lighting in the newborn intensive care unit. In: White R, Martin GI (eds). New Standards for Newborn Intensive Care Unit (NICU) design. J Perinatol 2006; 26: S5–S26.

    Article  Google Scholar 

  387. Lotas MJ . Effects of light and sound in the neonatal intensive care unit on the low birthweight infant. NAACOGS Clin Issu Perinat Womens Health Nurs 1992; 4: 34–44.

    Google Scholar 

  388. Robinson J, Fielder AR . Pupillary diameter and reaction to light in preterm neonates. Arch Dis Child 1990; 65: 35–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Roy MS, Caramelli C, Orquin J, Uleckas J, Hardy P, Chemtob S . Effects of early reduced light exposure on central visual development in preterm infants. Acta Paediatr 1999; 88: 459–461.

    Article  CAS  PubMed  Google Scholar 

  390. Shiroiwa Y, Kamiya Y, Uchibori S, Inudai K, Kito H et al. Activity, cardiac and respiratory responses of blindfold preterm infants in a neonatal intensive care unit. Early Hum Dev 1986; 14: 259–265.

    Article  CAS  PubMed  Google Scholar 

  391. Moseley MJ, Thompson JP, Levene MI, Fielder AR . Effects of nursery illumination of frequency of eyelid opening and state in preterm infants. Early Hum Dev 1988; 18: 13–26.

    Article  CAS  PubMed  Google Scholar 

  392. Fukuda K, Ishihara K . Development of human sleep and wakefulness rhythm during the first six months of life: discontinuous changes at the 7th and 12th weeks after birth. Biol Rhythm Res 1997; 28: 94–103.

    Article  Google Scholar 

  393. Glotzbach SF, Rowlett EA, Edgar DM, Moffat RJ, Ariagno RL . Light variability in the modern neonatal nursery: chronobiologic issues. Medical Hypotheses 1993; 41: 217–224.

    Article  CAS  PubMed  Google Scholar 

  394. Als H, Lawhon G, Duffy FH, McAnulty GB, Gibes-Grossman R, Bickman JR . Individualized developmental care for very low birth weight infant: medical and neurofunctional effects. JAMA 1994; 272: 853–858.

    Article  CAS  PubMed  Google Scholar 

  395. Ariagno RL, Thoman EB, Boeddiker MA, Kugener B, Constantinous JC, Mirmiran M . Developmental care does not alter sleep and development of premature infants. Pediatrics 1997; 100: e9. (Available at: http://www.pediatrics.aapublications.org/cgi/content/abstract/100/6/e9).

    Article  CAS  PubMed  Google Scholar 

  396. Glass P, Avery GB, Kolinjavadi N, Subramaninan S, Keys MP et al. Effect of bright light in the hospital nursery on the incidence of retinopathy of prematurity. N Engl J Med 1985; 313: 401–404.

    Article  CAS  PubMed  Google Scholar 

  397. Reynolds JD, Hardy RJ, Kennedy KA, Spencer R, van Heuven WAJ, Fielder AR, for the Light Reduction in Retinopathy of Prematurity (LIGHT-ROP) Cooperative Group. Lack of efficacy of light reduction in preventing retinopathy of prematurity. N Engl J Med 1998; 338: 1572–1576.

    Article  CAS  PubMed  Google Scholar 

  398. Phelps DL, Watts JL . Early light reduction for preventing retinopathy of prematurity in very low birth weight infants. Cochrane Database Syst Rev 2001; (1): CD000122. (Available at: http://www.nichd.nih.gov/cochrane/phelps/phelps.htm).

  399. Kennedy KA, Fielder AR, Hardy RJ, Tung B, Gordon DC, Reynolds JD, For the LIGHT-ROP Cooperative Group. Reduced lighting does not improve medical outcomes in very low birth weight infants. J Pediatr 2001; 139: 527–531.

    Article  CAS  PubMed  Google Scholar 

  400. Mirmiran M, Ariagno RL . Influence of light in the NICU on the development of circadian rhythms in preterm infants. Semin Perintol 2000; 24: 247–257.

    Article  CAS  Google Scholar 

  401. Mirmiran M, Kok JH . Circadian rhythms in early human development. Early Hum Dev 1991; 262: 121–128.

    Article  Google Scholar 

  402. Moore RY . Organization and function of central nervous system oscillator: the suprachiasmatic hypothalamic nucleus. Fed Proc 1983; 42: 2783–2789.

    CAS  PubMed  Google Scholar 

  403. Berson DM, Dunn FA, Takao M . Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002; 295: 1070–1073.

    Article  CAS  PubMed  Google Scholar 

  404. Provencio I, Rodriquez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD . A novel human opsin in the inner retina. J Neurosci 2000; 20: 600–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. de Vries JIP, Visser GH, Mulder EJ, Prechtl JF . Diurnal and other variations in fetal movement and heart rate patterns at 20 to 22 weeks. Early Hum Dev 1987; 15: 333–348.

    Article  CAS  PubMed  Google Scholar 

  406. Walsh SW, Ducsay CA, Novy MJ . Circadian hormonal interactions among the mother, fetus and amniotic fluid. Am J Obstet Gynecol 1984; 150: 745–753.

    Article  CAS  PubMed  Google Scholar 

  407. Rivkees SA, Hofman PL, Fortman J . Newborn primate infants are entrained by low intensity lighting. Proc Natl Acad Sci USA 1997; 94: 292–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Hao H, Rivkees H . The biological clock of very premature primate infants is responsive to light. Proc Natl Acad Sci 1999; 96: 2426–2429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. Mirmiran M, Kok JH, de Kleine MJK, Kope JG, Overdijk J, Witting W . Circadian rhythms in preterm infants: a preliminary study. Early Hum 1990; 23: 139–146.

    Article  CAS  Google Scholar 

  410. Glotzbach SF, Sollars P, Ariagno RL, Pickard GE . Development of the human retinohypothalamic tract. Soc Neurosci Abst 1992; 18: 875.

    Google Scholar 

  411. Updike PA, Accurso FJ, Jones RH . Physiologic circadian rhythmicity in preterm infants. Nurs Res 1985; 34: 160–163.

    Article  CAS  PubMed  Google Scholar 

  412. Glotzbach SF, Edgar DM, Ariagno RL . Biological rhythmicity in preterm infants prior to discharge from neonatal intensive care. Pediatrics 1995; 95: 231–237.

    CAS  PubMed  Google Scholar 

  413. Mantagos S, Moustogianni A, Varvarigou A, Frimas C . Effect of light on diurnal variation of blood amino acid levels in neonates. Bio Neonate 1989; 55: 97–110.

    Article  CAS  Google Scholar 

  414. Kuhle S, Klebermass K, Olischar M, Hulek M, Prusa A et al. Sleep-wake cycles in preterm infants below 30 weeks of gestational age. Preliminary results of a prospective amplitude-integrated EEG study. Wien Klin Wochenschr 2001; 113: 219–223.

    CAS  PubMed  Google Scholar 

  415. Scher M, Johnson M, Holditch-Davis D . Cyclicity of neonatal sleep behaviors at 25 to 30 weeks' postconceptual age. Pediatr Res 2005; 57: 879–882.

    Article  PubMed  Google Scholar 

  416. Rivkees SA, Mayes L, Jacobs H, Gross I . Rest-activity patterns of premature infants are regulated by cycled lighting. Pediatrics 2004; 113: 833–839.

    Article  PubMed  Google Scholar 

  417. Mann NP, Haddow R, Stokes L, Goodley S, Rutter N . Effect of night and day on preterm infants in a newborn nursery: randomized trial. BMJ 1986; 293: 1265–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Blackburn S, Patteson D . Effects of cycled light on activity state and cardiorespiratory functioni in preterm infants. J Perinat Neonatal Nurs 1991; 4: 47–54.

    Article  CAS  PubMed  Google Scholar 

  419. Grauer TT . Environmental lighting, behavioral state and hormonal response in the newborn. Scholar Inq Nurs Pract 1989; 3: 53–66.

    CAS  Google Scholar 

  420. Miller CL, White R, Whitman TL, O'Callaghan MF, Maxwell S . The effects of cycled versus noncycled lighting on growth and development in preterm infants. Infant Behav Dev 1995; 18: 87–95.

    Article  Google Scholar 

  421. Brandon DH, Holditch-Davis D, Belyea M . Preterm infants born at less than 31 weeks gestation have improved growth in cycled light compared with continuous near darkness. J Pediatr 2002; 140: 192–199.

    Article  PubMed  Google Scholar 

  422. Boo NY, Chee SC, Rohana J . Randomized controlled study of the effects of different durations of light exposure on weight gain by preterm infants in a neonatal intensive care unit. Acta Paediatrica 2002; 91: 674–679.

    Article  CAS  PubMed  Google Scholar 

  423. Mirmiran M, Baldwin R, Ariagno R . Circadian and sleep development in preterm infants occurs independently from the influences of environmental lighting. Pediatr Res 2003; 53: 933–938.

    Article  PubMed  Google Scholar 

  424. Shimada M, Segawa M, Higurashi M, Akamatsu H . Development of the sleep and wakefulness rhythm in preterm infants discharged from a neonatal care unit. Pediatr Res 1993; 33: 159–163.

    Article  CAS  PubMed  Google Scholar 

  425. Illnerova H, Buresova M, Presl J . Melatonin rhythm in human milk. J Clin Endocrinol Metab 1993; 77: 838–841.

    CAS  PubMed  Google Scholar 

  426. Hubel DH, Wiesel TN . Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 1962; 160: 106–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  427. Stryker MP, Sherk H, Leventhal AG et al. Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours. J Neurophysiol 1978; 41: 896–909.

    Article  CAS  PubMed  Google Scholar 

  428. Haraden C . What is a bundle? IHI.org (Available at: http://www.ihi.org/ihi/topics/criticalcare/intensivecare/improvementstories/whatisabundle.htm).

  429. Borghese IF, Minard KL, Thoman EB . Sleep rhythmicity in premature infants: implications for developmental status. Sleep. 1995; 18: 523–530.

    Article  CAS  PubMed  Google Scholar 

  430. Symington A, Pinelli J . Developmental care for promoting development and preventing morbidity in preterm infants. Cocharane Database Syst Rev. 3, 2006. (Available at: http://www.nich.nih.gov/cochrane/symington/symington.htm).

  431. Als H, Gilkerson L, Duffy FH, McAnulty GB, Buehler DM et al. A three-center, randomized, controlled trial of individualized developmental care for very low birth weight preterm infants: medical, neurodevelopmental, parenting, and caregiving effects. J Dev Behav Pediatr 2003; 24: 399–408.

    Article  PubMed  Google Scholar 

  432. Beuhler DM, Als H, Duffy FH, McAnulty GB, Liederman J . Effectiveness of individualized developmental care for low-risk preterm infants: behavioral and electrophysiological evidence. Pediatrics 1995; 96: 923–932.

    Google Scholar 

  433. Jacobs S, Sokol J, Ohlsson A . The newborn individualized developmental care and assessment program is not supported by meta-analyses of the data. J Pediatr 2002; 140: 699–706.

    Article  PubMed  Google Scholar 

  434. Als H, Gilkerson L, Duffy FH, McAnulty GB, Buehler DM et al. A three-center, randomized, controlled trial of individualized developmental care for very low birth weight preterm infants: medical, neurodevelopmental, parenting, and caregiving effects. J Dev Behav Pediatr 2003; 24: 399–408.

    Article  PubMed  Google Scholar 

  435. Perlman JM . Neurobehavioral deficits in premature graduates of intensive care- potential medical and neonatal environmental risk factors. Pediatrics 2001; 108: 1339–1348.

    Article  CAS  PubMed  Google Scholar 

  436. Gressens P, Richelme C, Kadhim HJ, Gadisseux JF, Evrard P . The germinative zone produces the most cortical astrocytes after neuronal migration in the developing mammalian brain. Biol Neonate 1992; 62: 4–24.

    Article  Google Scholar 

  437. Saigal S, Stoskopf BL, Streiner DL, Burrows E . Physical growth and current health status of infants who were of extremely low birth weight and controls at adolescence. Pediatrics 2001; 108: 407–415.

    Article  CAS  PubMed  Google Scholar 

  438. Hack M, Fanaroff AA . Outcomes of children of extremely low birthweight and gestational age I the 1990's. Early Hum Dev 1999; 53: 193–218.

    Article  CAS  PubMed  Google Scholar 

  439. Stjernqvist K, Svenningsen NW . Ten-year follow up of children born before 29 weeks gestational age: health, cognitive development, behaviour and school achievement. Acta Paediatr 1999; 88: 557–562.

    Article  CAS  PubMed  Google Scholar 

  440. Hack M, Taylor HG . Perinatal brain injury in preterm infants and later neurobehavioral function. JAMA 2000; 284: 1973–1974.

    Article  CAS  PubMed  Google Scholar 

  441. Hack M, Wilson-Costello D, Friedman H, Taylor GH, Schluchter M, Fanaroff AA . Neurodevelopment and predictors of outcomes of children with birth weights of less than 1000 g. Arch Pediatr Adolesc Med 2000; 154: 725–731.

    Article  CAS  PubMed  Google Scholar 

  442. Wood NS, Marlow N, Costeloe K, Gibson AT, Wilkinson AR . Neurologic and developmental disability after extremely preterm birth. EPICure Study Group. N Engl J Med 2000; 342: 378–384.

    Article  Google Scholar 

  443. Hack M, Taylor HG, Drotar D, Schluchter M, Cartar L et al. Chronic conditions, functional limitations, and special health care needs of school-aged children born with extremely low-birth-weight in the 1990's. JAMA 2005; 294: 318–325.

    Article  CAS  PubMed  Google Scholar 

  444. McCormick M, workman-Daniels K, Brooks-Gunn J . The behavioral and emotional well-being of school-age children with different birth weights. Pediatrics 1996; 93: 543–550.

    Google Scholar 

  445. Anderson PJ, Doyle LW, Victorian Infant Collaborative Study Group. Executive functioning in school-aged children who were born very preterm with extremely low birth weight in the 1990's. Pediatrics 2004; 114: 50–57.

    Article  PubMed  Google Scholar 

  446. Volpe JJ . Cerebral white matter injury of the premature infant: more common than you think. Pediatrics 2003; 112: 176–179.

    Article  PubMed  Google Scholar 

  447. Schmidt B, Davis P, Moddemann D, Ohlsson A, Roberts RS et al. Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Engl J Med 2001; 344: 1966–1972.

    Article  CAS  PubMed  Google Scholar 

  448. Inder TE, Wells SJ, Mogridge N, Spencer C, Volpe JJ . Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 2003; 143: 171–179.

    Article  PubMed  Google Scholar 

  449. Counsell SJ, Allsop JM, Harrison MC, Larkman DJ, Kennea NL et al. Diffusion weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 2003; 112: 1–7.

    Article  PubMed  Google Scholar 

  450. Leviton A, Gilles F . Ventriculomegaly, delayed myelination, white matter hypoplasia, and ‘periventricular’ leukomalacia. How are they related? Pediatr Neurol 1996; 15: 127–136.

    Article  CAS  PubMed  Google Scholar 

  451. Maalouf EF, Duggan PJ, Counsell S, Rutherford MA, Cowan F et al. Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 2001; 107: 719–727.

    Article  CAS  PubMed  Google Scholar 

  452. Mewes AUJ, Huppi PS, Als H, Rybicki FJ, Inder TE et al. Regional brain development in serial magnetic resonance imaging of low-risk preterm infants. Pediatrics 2006; 118: 23–33.

    Article  PubMed  Google Scholar 

  453. Peterson BS, Anderson AW, Ehrenkranz RA, Staib LH, Tageldin M et al. Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants. Pediatrics 2003; 111: 939–948.

    Article  PubMed  Google Scholar 

  454. Peterson BS, Vohr B, Staib LH, Cannistraci CJ, Dolberg A et al. Regional brain volume abnormalites and long-term cognitive outcome in preterm infants. JAMA 2000; 284: 1939–1947.

    Article  CAS  PubMed  Google Scholar 

  455. Nosarti C, Al-Alsady MH, Frangou S, Stewart AL, Rifkin L, Murray RM . Adolescents who were born very preterm have decreased brain volumes. Brain 2002; 125: 1616–1625.

    Article  PubMed  Google Scholar 

  456. Lodygensky GA, Rademaker K, Zimine S, Gex-Fabry M, Leiftizn AR et al. Structural and functional brain development after hydrocortisone treatment for neonatal chronic lung disease. Pediatrics 2005; 116: 1–7.

    Article  PubMed  Google Scholar 

  457. Hack M, Breslau N, Weissman B, Aram D, Klein N, Borawski E . Effect of very low birth weight and subnormal head size on cognitive abilities at school age. N Engl J Med 1991; 325: 231–237.

    Article  CAS  PubMed  Google Scholar 

  458. Marin-Padilla M . Developmental neuropathology and impact of perinatal brain damage. I: hemorrhagic lesions of neocortex. J Neuropathol Exp Neurol 1996; 55: 758–773.

    Article  CAS  PubMed  Google Scholar 

  459. Marin-Padilla M . Developmental neuropathology and impact of perinatal brain damage. II: white matterlesions of the neocortex. J Neuropathol Exp Neurol 1997; 56: 219–235.

    Article  CAS  PubMed  Google Scholar 

  460. Hack M, Taylor HG, Klein N, Eiben R, Schatschneider C, Mercuri-Minich N . School-age outcomes in children with birth weights under 750 g. N Engl J Med 1994; 331: 753–759.

    Article  CAS  PubMed  Google Scholar 

  461. Isaacs E, Lucas A, Chong WK, Wood SJ, Johnson CL et al. Hippocampal volume and everyday memory in children of very low birth weight. Pediatr Res 2000; 47: 713–720.

    Article  CAS  PubMed  Google Scholar 

  462. Abernethy LJ, Cooke RW, Foulder-Hughes L . Caudate and hippocampal volumes, intelligence, and motor impairment in 7-year-old children who were born preterm. Pediatr Res 2004; 55: 884–893.

    Article  PubMed  Google Scholar 

  463. Peterson BS, Vohr B, Kane MJ, Whalen DH, Schneider KC et al. A functional magnetic resonance imaging study of language processing and its cognitive correlates in prematurely born children. Pediatrics 2002; 110: 1153–1162.

    Article  PubMed  Google Scholar 

  464. Ambalavan N, Baibergenova A, Carlo W, Saigal S, Schmidt B, Thorpe K et al. Early prediction of poor outcome in extremely low birth weight infants by classification tree analysis. J Pediatr 2006; 148: 438–444.

    Article  Google Scholar 

  465. Hack M, Flannery DJ, Schluchter M, Cartar L, Borawski E, Klein N . Outcomes in young adulthood for very-low-birth-weight infants. N Engl J Med 2002; 346: 149–157.

    Article  PubMed  Google Scholar 

  466. Hack M, Taylor G, Drotar D, Schluchter M, Cartar L et al. Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight obtained at 20 months of age is a poor predictor of cognitive function in children at school age. Pediatrics 2005; 116: 333–341.

    Article  PubMed  Google Scholar 

  467. MacKendrick W . Understanding neurodevelopment in premature infants: applied chaos theory. J Pediatr 2006; 148: 427–429.

    Article  PubMed  Google Scholar 

  468. Ment LR, Vohr B, Allan W, Katz KH, Schneider KC et al. Change in cognitive function over time in very low-birth-weight infants. JAMA 2003; 289: 705–711.

    Article  PubMed  Google Scholar 

  469. Johnston T . Environmental constraints and the natural context of behavior: grounds for an ecological approach to the study of infant perception. In: Gottlieb G. Krasnegor NA (eds). Measurement of Audition and Vision in the First Year of Postnatal Life. Ablex: Norwood, 1985, pp 91–108.

    Google Scholar 

  470. Thomas KM . Assessing brain development using neurophysiologic and behavioral measures. J Pediatr 2003; 143: S46–S53.

    Article  PubMed  Google Scholar 

  471. Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE . Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 2006; 355: 685–694.

    Article  CAS  PubMed  Google Scholar 

  472. Accardo J, Kammann H, Hoon AH . Neuroimaging in cerebral palsy. J Pediatr 2004; 145: S19–S27.

    Article  PubMed  Google Scholar 

  473. Anderson NG, Laurent I, Woodward LJ, Inder TE . Detection of impaired growth of the corpus callosum in premature infants. Pediatrics 2006; 118: 951–960.

    Article  PubMed  Google Scholar 

  474. Als H, Duffy FH, McAnulty GB, Rivkin MJ, Vajapeyam S et al. Early experience alters brain function and structure. Pediatrics 2004; 113: 846–857.

    Article  PubMed  Google Scholar 

  475. Avery GB, Glass P . The gentle nursery: developmental intervention in the NICU. J Perinatol 1989; 9: 204–206.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This report was completed as a part of the Neonatal Intensive Care Quality Collaborative 2005 to Improve Neonatal Care, which was sponsored by VON. We thank the representatives of the participating centers that contributed their efforts to the preparation of this manuscript: Benefis Healthcare: Beckett Perkins NNP, Vicki Birkeland NNP, Rob Archer RRT, Cheryl Worden RN; Mississippi Baptist Medical Center: Sanjosa Martin RN, Jack Owens MD; Sunnybrook Health Science Center: Michael Dunn MD, Elizabeth MacMillan-York, Dorothy Dougherty RN; The Children's Hospital of Southwest Florida: William Liu MD, Sandy Blackington RNC, MS, Sandra Eanes-McGugan RN, BSN; Wesley Medical Center: Susan Laudert MD, Paula DelmoreRNC, MSN. The Group thanks Stanley Graven, MD for clinical expertise and Jim Handyside for expert facilitation. Special thanks to Narges Ahmadi MLIS, medical librarian at Lee Memorial Health System/The Children's Hospital of Southwest Florida.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to W F Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Laudert, S., Perkins, B. et al. The development of potentially better practices to support the neurodevelopment of infants in the NICU. J Perinatol 27 (Suppl 2), S48–S74 (2007). https://doi.org/10.1038/sj.jp.7211844

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jp.7211844

Keywords

This article is cited by

Search

Quick links