Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determinants of ultrafine particle exposures in transportation environments: findings of an 8-month survey conducted in Montréal, Canada

Abstract

An 8-month sampling campaign was conducted in Montréal, Canada to explore determinants of ultrafine particle (UFP) exposures in transportation environments and to develop models to predict such exposures. Between April and November 2006, UFP (0.02–1 μm) count exposure data were collected for one researcher during 80 morning and evening commutes including a 0.5-km walk, a 3-km bus ride, and a 26-km automobile ride in each direction. Ambient temperature, relative humidity, precipitation, and wind speed/direction data were collected for each transit period and the positions of bus and automobile windows were recorded. Mixing heights were also estimated. Morning UFP exposures were significantly greater than those in the evening, with the highest levels observed in the automobile and the lowest while walking. Wind speed and mixing height were highly correlated, and as a result only wind speed was considered in multivariable models owing to the accessibility of quantitative hourly monitoring data. In these models, each 10°C increase in morning temperature was associated with decreases of 14,560/cm3 (95% CI=11,111 to 18,020), 8160/cm3 (95% CI=5060 to 11,260), and 11,310/cm3 (95% CI=6820 to 15,810) for UFP exposures in walk, bus, and automobile environments, respectively. Likewise, each 10-km/h increase in morning wind speed corresponded to decreases of 8252/cm3 (95% CI=5130 to 11,360), 6210/cm3 (95% CI=3420 to 9000), and 6350/cm3 (95% CI=2440 to 10,260) for UFP exposures in walk, bus, and automobile environments, respectively. Similar trends were observed in the evening hours. In an evaluation of model performance, moderate correlations were observed between measured and predicted UFP exposures on new bus (r=0.65) and automobile (r=0.77) routes. Further research is required to incorporate variables such as traffic density and vehicle ventilation settings into the models presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aalto P., Hämeri K., Paatero P., Kulmala M., Bellander T., Berglind N., Bouso L., Castano-Vinyals G., Sunyer J., Cattani G., Marconi A., Cyrys J., von Klot S., Peters A., Zetzsche K., Lanki T., Pekkanen J., Nyberg F., Sjövall B., and Forastiere F. Aerosol particle number concentration measurements in five European cities using TSI-3022 condensation particle counter over a three-year period during health effects of air pollution on susceptible subpopulations. J Air Waste Manage Assoc 2005: 55: 1064–1076.

    Article  CAS  Google Scholar 

  • Abraham J.L., Siwinski G., and Hunt A. Ultrafine particulate exposures in indoor, outdoor, personal and mobile environments: effects of diesel, traffic, pottery kiln, cooking and HEPA filtration on micro-environmental particulate number concentration. Ann Occup Hyg 2002: 46 (Suppl 1): 406–411.

    Google Scholar 

  • Afaq F., Abidi P., Matin R., and Rahman Q. Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide. J Appl Toxicol 1998: 18: 307–312.

    Article  CAS  Google Scholar 

  • Behrentz E., Sabin L.D., Winer A.M., Fitz D.R., Pankratz D.V., Colome S.D., and Fruin S.A. Relative importance of school bus-related microenvironments to children's pollutant exposure. J Air Waste Manage Assoc 2005: 55: 1418–1430.

    Article  CAS  Google Scholar 

  • Brown D.M., Wilson M.R., MacNee W., Stone V., and Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 2001: 175: 191–199.

    Article  CAS  Google Scholar 

  • Brown J.S., Zeman K.L., and Bennett W.D. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med 2002: 166: 1240–1247.

    Article  Google Scholar 

  • Chalupa D.C., Morrow P.E., Oberdörster G., Utell M.J., and Frampton M.W. Ultrafine particle deposition in subjects with asthma. Environ Health Perspect 2004: 112: 879–882.

    Article  CAS  Google Scholar 

  • Chan C.C., Chuang K.J., Shiao G.M., and Lin L.Y. Personal exposure to submicrometer particles and heart rate variability in human subjects. Environ Health Perspect 2004: 112: 1063–1067.

    Article  CAS  Google Scholar 

  • Cheng S.Y., Huang G.H., Chakma A., Hao R.X., Liu L., and Zhang X.H. Estimation of atmospheric mixing heights using data from airport meteorological stations. J Environ Sci Health A 2001: 36: 521–532.

    Article  CAS  Google Scholar 

  • Cyrys J., Stölzel M., Heinrich J., Kreyling W.G., Menzel N., Wittmaack K., Tuch T., and Wichmann H.E. Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany. Sci Total Environ 2003: 305: 143–156.

    Article  CAS  Google Scholar 

  • de Hartog J.J., Hoek G., Mirme A., Tuch T., Kos G.P.A., ten Brink H.M., Brunekreef B., Cyrys J., Heinrich J., Pitz M., Lanki T., Vallius M., Pekkanen J., and Kreyling W.G. Relationship between different size classes of particulate matter and meteorology in three European cities. J Environ Monit 2005: 7: 302–310.

    Article  CAS  Google Scholar 

  • Delfino R.J., Sioutas C., and Malik S. Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ Health Perspect 2005: 113: 947–955.

    Article  Google Scholar 

  • Dick C.A.J., Brown D.M., Donaldson K., and Stone V. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol 2003: 15: 39–52.

    Article  CAS  Google Scholar 

  • Frampton M.W., Utell M.J., Zareba W., Oberdorster G., Cox C., Huang L.S., Morrow P.E., Lee F.E., Chalupa D., Fraiser L.M., Speers D.M., and Stewart J. Effects of exposure to ultrafine carbon particles in health subjects and subjects with asthma. Res Rep Health Effect Inst 2004: 126: 1–47.

    Google Scholar 

  • Fujita E.M., Zielinska B., Campbell D.E., Arnott W.P., Sagebiel J.C., Mazzoleni L., Chow J.C., Gabele P.A., Crews W., Snow R., Clark N.N., Wayne W.S., and Lawson D.R. Variations in speciated emissions from spark-ignition and compression ignition motor vehicles in California's South Coast air basin. J Air Waste Manage Assoc 2007: 57: 705–720.

    Article  CAS  Google Scholar 

  • Geller M.D., Ntziachristos L., Mamakos A., Samaras Z., Schmitz D.A., Froines J.R., and Sioutas C. Physiochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars. Atmos Environ 2006: 40: 6988–7004.

    Article  CAS  Google Scholar 

  • Gidhagen L., Johansson C., Omstedt G., Langner J., and Olivares G. Model simulations of NOx and ultrafine particles close to a Swedish highway. Environ Sci Technol 2004: 38: 6730–6740.

    Article  CAS  Google Scholar 

  • Gilmour P.S., Ziesenis A., Morrison E.R., Vickers M.A., Drost E.M., Ford I., Erwin K., Mossa C., Schroeppel A., Ferron G.A., Heyder J., Greaves M., MacNee W., and Donaldson K. Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol Appl Pharmacol 2004: 195: 35–44.

    Article  CAS  Google Scholar 

  • Hammond D., Jones S., and Lalor M. In-vehicle measurement of ultrafine particles on compressed natural gas, conventional diesel, and oxidation-catalyst diesel heavy-duty transit buses. Environ Monit Assess 2006: 125: 239–246.

    Article  Google Scholar 

  • Harrison R.M., Jones M., and Collins G. Measurements of the physical properties of particles in the urban atmosphere. Atmos Environ 1999: 33: 309–321.

    Article  CAS  Google Scholar 

  • Health Canada. Evaluation of the levels of diesel-related pollutants on school buses during the transportation of children, 2005. Catalog no. H128-1/06-455E. www.hc-sc.gc.ca.

  • Jeong C.H., Evans G.J., Hopke P.K., Chalupa D., and Utell M.J. Influence of atmospheric dispersion and new particle formation events on ambient particle number concentration in Rochester, United States, and Toronto, Canada. J Air Waste Manage Assoc 2006: 56: 431–443.

    Article  CAS  Google Scholar 

  • Jeong C.H., Hopke P.K., Chalupa D., and Utell M. Characteristics of nucleation and growth events of ultrafine particles measured in Rochester, NY. Environ Sci Technol 2004: 38: 1933–1940.

    Article  CAS  Google Scholar 

  • Kass R.E., and Raftery A.E. Bayes factors. JASA 1995: 90: 773–795.

    Article  Google Scholar 

  • Kaur S., Clark R.D.R., Walsh P.T., Arnold S.J., Colvie R.N., and Nieuwenhuijsen M.J. Exposure visualisation of ultrafine particle counts in a transportation microenvironment. Atmos Environ 2006: 40: 386–398.

    Article  CAS  Google Scholar 

  • Kaur S., Nieuwenhuijsen M.J., and Colvile R.N. Pedestrian exposure to air pollution along a major road in central London, UK. Atmos Environ 2005a: 39: 7307–7320.

    Article  CAS  Google Scholar 

  • Kaur S., Nieuwenhuijsen M., and Colvile R. Personal exposure of street canyon intersection users to PM2.5, ultrafine particle counts and carbon monoxide in central London, UK. Atmos Environ 2005b: 39: 3629–3641.

    Article  CAS  Google Scholar 

  • Kittelson D.B. Engines and nanoparticles: a review. J Aerosol Sci 1998: 29: 575–588.

    Article  CAS  Google Scholar 

  • Kittelson D.B., Watts W.F., and Johnson J.P. Nanoparticle emissions on Minnesota highways. Atmos Environ 2004: 38: 9–19.

    Article  CAS  Google Scholar 

  • Korhonen H., Lehtinen K.E.J., and Kulmala M. Multicomponent aerosol dynamics model UHMA: model development and validation. Atmos Chem Phys 2004: 4: 757–771.

    Article  CAS  Google Scholar 

  • Kuhlbusch T.A.J., John A.C., and Fissan J.H. Diurnal variations of aerosol characteristics at a rural measuring site close to the Ruhr-area, Germany. Atmost Environ 2001: 35 (Suppl 1): S13–S21.

    Article  CAS  Google Scholar 

  • Kulmala M., Vehkamäki H., Petäjä T., Maso D., Lauri A., Kerminen V.M., Birmili W., and McMurry P.H. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 2004: 35: 143–176.

    Article  CAS  Google Scholar 

  • Levy J.I., Bennett D.H., Melly S.J., and Spengler J.D. Influence of traffic patterns on particulate matter and polycyclic aromatic hydrocarbon concentrations in Roxbury, Massachusetts. J Expo Anal Environ Epidemiol 2003: 13: 364–371.

    Article  CAS  Google Scholar 

  • Levy J.I., Dumyahn T., and Spengler J.D. Particulate matter and polycyclic aromatic hydrocarbon concentrations in indoor and outdoor microenvironments in Boston, Massachusetts. J Expo Anal Environ Epidemiol 2002: 12: 104–114.

    Article  CAS  Google Scholar 

  • Li N., Hao M., Phalen R.F., Hinds W.C., and Nel A.E. Particulate air pollutants and asthma: a paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol 2003: 109: 250–265.

    Article  CAS  Google Scholar 

  • Li X.Y., Gilmour P.S., Donaldson K., and MacNee W. Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo and in vitro. Thorax 1996: 51: 1216–1222.

    Article  CAS  Google Scholar 

  • Matson U., Ekberg L.E., and Afshari A. Measurement of ultrafine particles: a comparison of two handheld condensation particle counters. Aerosol Sci Technol 2004: 38: 487–495.

    Article  CAS  Google Scholar 

  • Morawska L., and Zhang J.J. Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere 2002: 49: 1045–1058.

    Article  CAS  Google Scholar 

  • Oberdörster G., Ferin J., and Lehnert B.E. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 1994: 102 (Suppl 6): 173–179.

    Article  Google Scholar 

  • Penttinen P., Timonen K.L., Tiittanen P., Mirme A., Ruuskanen J., and Pekkanen J. Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur Respir J 2001a: 17: 428–435.

    Article  CAS  Google Scholar 

  • Penttinen P., Timonen K.L., Tiittanen P., Mirme A., Ruuskanen J., and Pekkanen J. Number concentration and size of particles in urban air: effects on spirometric lung function in adult asthmatic subjects. Environ Health Perspect 2001b: 109: 319–323.

    Article  CAS  Google Scholar 

  • Peters A., Wichmann E., Tuch T., Heinrich J., and Heyder J. Respiratory effects are associated with the number of ultra-fine particles. Am J Respir Crit Care Med 1997: 155: 1376–1383.

    Article  CAS  Google Scholar 

  • Rundell K.W., Hoffman J.R., Caviston R., Bulbulian R., and Hollenbach A.M. Inhalation of ultrafine and fine particulate matter disrupts systemic vascular function. Inhal Toxicol 2007: 19: 133–140.

    Article  CAS  Google Scholar 

  • Sabin L.D., Behrentz E., Winer A.M., Jeong S., Fitz D.R., Pankratz D.V., Colome S.D., and Fruin S.A. Charactering the range of children's air pollutant exposure during school bus commutes. J Expo Anal Environ Epidemiol 2005: 15: 377–387.

    Article  CAS  Google Scholar 

  • Sakurai H., Tobais H.J., Park K., Zarling D., Docherty S., Kittelson D.M., McMurray P.H., and Ziemann P.J. Online measurements of diesel nanoparticle composition and volatility. Atmos Environ 2003: 37: 1199–1210.

    Article  CAS  Google Scholar 

  • Sioutas C., Delfino R.J., and Singh M. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 2005: 113: 947–955.

    Article  Google Scholar 

  • Stölzel M., Breitner S., Cyrys J., Pitz M., Wölke G., Kreyling W., Heinrich J., Wichmann H.E., and Peters A. Daily mortality and particulate matter in different size classes in Erfurt, Germany. J Expo Sci Environ Epidemiol 2006: Online publication 15 November; doi:10.1038/sj.jes.7500538.

  • Tobias H.J., Beving D.E., Ziemann P.J., Sakurai H., Zuk M., McMurray P.H., Zarling D., Waytulonis R., and Kittelson D.B. Chemical analysis of diesel engine nanoparticles using a nano-DMA/thermal desorption particle beam mass spectrometer. Environ Sci Technol 2001: 35: 2233–2243.

    Article  CAS  Google Scholar 

  • Vinzents P.S., Moller P., Sorensen M., Knudsen L.E., Hertel O., Jensen F.P., Schibye B., and Loft S. Personal exposure to ultrafine particles and oxidative DNA damage. Environ Health Perspect 2005: 113: 1485–1490.

    Article  CAS  Google Scholar 

  • Von Klot S., Wolke G., Tuch T., Heinrich J., Dockery D.W., Schwartz J., Kreyling W.G., Wichmann H.E., and Peters A. Increased asthma medication use in association with ambient fine and ultrafine particles. Eur Respir J 2002: 20: 691–702.

    Article  CAS  Google Scholar 

  • Wang D., Zhang W., and Bakhai A. Comparison of Bayesian model averaging and stepwise methods for model selection in logistic regression. Stat Med 2004: 23: 3451–3467.

    Article  Google Scholar 

  • Wasserman L. Bayesian model selection and model averaging. J Math Psychol 2000: 44: 92–107.

    Article  CAS  Google Scholar 

  • Westerdahl D., Fruin S., Sax T., Fine P.M., and Sioutas C. Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmos Environ 2005: 39: 3597–3610.

    Article  CAS  Google Scholar 

  • Wichmann H.E., Spix C., Tuch T., Wolke G., Peters A., Heinrich J., Kreyling H.G., and Heyder J. Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: role of particle number and particle mass. Res Rep Health Eff Inst 2000: 98: 5–86.

    Google Scholar 

  • Young L.H., and Keeler G.J. Characterization of ultrafine particle number concentration and size distribution during a summer campaign in southwest Detroit. J Air Waste Manage Assoc 2004: 54: 1079–1090.

    Article  Google Scholar 

  • Zheng Q., Kusaka Y., and Sato K. Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: role of free radicals. J Toxicol Environ Health Part A 1998: 53: 423–438.

    Article  Google Scholar 

  • Zhu Y., Eiguren-Fernandez A., Hinds W.C., and Miguel A.H. In-cabin commuter exposure to ultrafine particles on Los Angeles freeways. Environ Sci Technol 2007: 41: 2138–2145.

    Article  CAS  Google Scholar 

  • Zhu Y., Hinds W.C., Kim S., and Sioutas C. Concentration and size distribution of ultrafine particles near a major highway. J Air Waste Manage Assoc 2002: 52: 1032–1042.

    Article  Google Scholar 

  • Zhu Y., Kuhn T., Mayo P., and Hinds W.C. Comparison of daytime and nighttime concentration profiles and size distributions of ultrafine particles near a major highway. Environ Sci Technol 2006a: 8: 2532–2536.

    Google Scholar 

  • Zhu Y., Yu N., Hinds W.C., and Kuhn T. Field comparison of P-Trak and condensation particle counters. Aerosol Sci Technol 2006b: 40: 422–430.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted with support from The Canadian Research Network Centre of Excellence (AllerGen). We also acknowledge Mr. Martin Gravelle for his assistance in the collection of automobile exposure data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Weichenthal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weichenthal, S., Dufresne, A., Infante-Rivard, C. et al. Determinants of ultrafine particle exposures in transportation environments: findings of an 8-month survey conducted in Montréal, Canada. J Expo Sci Environ Epidemiol 18, 551–563 (2008). https://doi.org/10.1038/sj.jes.7500644

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jes.7500644

Keywords

This article is cited by

Search

Quick links