Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ultrasound-contrast agent mediated naked gene delivery in the peritoneal cavity of adult rat

Abstract

Gene transfer into the peritoneal cavity by nonviral methods may provide an effective therapeutic approach for peritoneal diseases. Herein, we investigated the feasibility and the effectiveness of ultrasound-microbubble–mediated delivery of naked plasmid DNA into the peritoneal cavity in rats. Following the intraperitoneal or the intravenous administration of a mixture of plasmid DNA (100 μg) and ultrasound contrast agent microbubbles, an ultrasound transducer was applied on the abdominal wall. The reporter pTRE plasmid encoding Smad7 was used to evaluate transfection efficiency. Smad7 expression was induced by doxycycline in drinking water. We detected less than 10% apoptotic cells and no inflammatory reaction in peritoneal tissues following the ultrasound-microbubble-mediated transfection. More importantly, the insonation significantly improved the transfection efficiency in peritoneal tissues. The transfection efficiency by intraperitoneal delivery route was higher than the intravenous route. The reporter gene, pTRE-Smad7, was readily detected in the parietal peritoneum, mesentery, greater omentum and adipose tissue. The peak of transgene expression occurred 2 days after transfection and the transgene expression diminished in a time-dependent manner thereafter. Overall, the effectiveness and simplicity of the ultrasound-microbubble-mediated system may provide a promising nonviral means for improving gene delivery for treating peritoneal diseases in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hoff CM, Shockley TR . Peritoneal dialysis in the 21st century: the potential of gene therapy. J Am Soc Nephrol 2002; 13 (Suppl 1): S117–S124.

    CAS  PubMed  Google Scholar 

  2. Margetts PJ, Kolb M, Galt T, Hoff CM, Shockley TR, Gauldie J . Gene transfer of transforming growth factor-beta1 to the rat peritoneum: effects on membrane function. J Am Soc Nephrol 2001; 12: 2029–2039.

    CAS  PubMed  Google Scholar 

  3. Simoes MV, Miyagawa M, Reder S, Stadele C, Haubner R, Linke W et al. Myocardial kinetics of reporter probe 124I-FIAU in isolated perfused rat hearts after in vivo adenoviral transfer of herpes simplex virus Type 1 thymidine kinase reporter gene. J Nucl Med 2005; 46: 98–105.

    CAS  PubMed  Google Scholar 

  4. Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finkel T . Efficient and selective adenovirus-mediated gene transfer into vascular neointima. Circulation 1993; 88: 2838–2848.

    Article  CAS  Google Scholar 

  5. Nakao A, Fujii M, Matsumura R, Kumano K, Saito Y, Miyazono K et al. Transient gene transfer and expression of Smad7 prevents bleomycin-induced lung fibrosis in mice. J Clin Invest 1999; 104: 5–11.

    Article  CAS  Google Scholar 

  6. Kay MA, Glorioso JC, Naldini L . Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7: 33–40.

    Article  CAS  Google Scholar 

  7. Hoff CM . Ex vivo and in vivo gene transfer to the peritoneal membrane in a rat model. Nephrol Dial Transplant 2001; 16: 666–668.

    Article  CAS  Google Scholar 

  8. Miyazaki M, Obata Y, Abe K, Furusu A, Koji T, Tabata Y et al. Gene transfer using nonviral delivery systems. Perit Dial Int 2006; 26: 633–640.

    CAS  PubMed  Google Scholar 

  9. Kikuchi A, Aoki Y, Sugaya S, Serikawa T, Takakuwa K, Tanaka K et al. Development of novel cationic liposomes for efficient gene transfer into peritoneal disseminated tumor. Hum Gene Ther 1999; 10: 947–955.

    Article  CAS  Google Scholar 

  10. Bloquel C, Fabre E, Bureau MF, Scherman D . Plasmid DNA electrotransfer for intracellular and secreted proteins expression: new methodological developments and applications. J Gene Med 2004; 6 (Suppl 1): S11–S23.

    Article  CAS  Google Scholar 

  11. Christiansen JP, French BA, Klibanov AL, Kaul S, Lindner JR . Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol 2003; 29: 1759–1767.

    Article  Google Scholar 

  12. Bekeredjian R, Chen S, Frenkel PA, Grayburn PA, Shohet RV . Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 2003; 108: 1022–1026.

    Article  Google Scholar 

  13. Miller MW . Gene transfection and drug delivery. Ultrasound Med Biol 2000; 26 (Suppl 1): S59–S62.

    Article  Google Scholar 

  14. Unger EC, Hersh E, Vannan M, McCreery T . Gene delivery using ultrasound contrast agents. Echocardiography 2001; 18: 355–361.

    Article  CAS  Google Scholar 

  15. Blomley MJ, Cooke JC, Unger EC, Monaghan MJ, Cosgrove DO . Microbubble contrast agents: a new era in ultrasound. BMJ 2001; 322: 1222–1225.

    Article  CAS  Google Scholar 

  16. Taniyama Y, Tachibana K, Hiraoka K, Namba T, Yamasaki K, Hashiya N et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 2002; 105: 1233–1239.

    Article  CAS  Google Scholar 

  17. Unger EC, Hersh E, Vannan M, Matsunaga TO, McCreery T . Local drug and gene delivery through microbubbles. Prog Cardiovasc Dis 2001; 44: 45–54.

    Article  CAS  Google Scholar 

  18. Hou CC, Wang W, Huang XR, Fu P, Chen TH, Sheikh-Hamad D et al. Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney. Am J Pathol 2005; 166: 761–771.

    Article  CAS  Google Scholar 

  19. Guo DP, Li XY, Sun P, Wang ZG, Chen XY, Chen Q et al. Ultrasound/microbubble enhances foreign gene expression in ECV304 cells and murine myocardium. Acta Biochim Biophys Sin (Shanghai) 2004; 36: 824–831.

    Article  CAS  Google Scholar 

  20. Li T, Tachibana K, Kuroki M, Kuroki M . Gene transfer with echo-enhanced contrast agents: comparison between Albunex, Optison, and Levovist in mice—initial results. Radiology 2003; 229: 423–428.

    Article  Google Scholar 

  21. Shimamura M, Sato N, Taniyama Y, Kurinami H, Tanaka H, Takami T et al. Gene transfer into adult rat spinal cord using naked plasmid DNA and ultrasound microbubbles. J Gene Med 2005; 7: 1468–1474.

    Article  CAS  Google Scholar 

  22. Ohta S, Suzuki K, Tachibana K, Yamada G . Microbubble-enhanced sonoporation: efficient gene transduction technique for chick embryos. Genesis 2003; 37: 91–101.

    Article  CAS  Google Scholar 

  23. Endoh M, Koibuchi N, Sato M, Morishita R, Kanzaki T, Murata Y et al. Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound. Mol Ther 2002; 5: 501–508.

    Article  CAS  Google Scholar 

  24. Zou SM, Erbacher P, Remy JS, Behr JP . Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J Gene Med 2000; 2: 128–134.

    Article  CAS  Google Scholar 

  25. Chollet P, Favrot MC, Hurbin A, Coll JL . Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J Gene Med 2002; 4: 84–91.

    Article  Google Scholar 

  26. Hoff CM, Margetts PJ . Adenovirus-based transient expression systems for peritoneal membrane research. Perit Dial Int 2006; 26: 547–558.

    CAS  PubMed  Google Scholar 

  27. Lan HY, Mu W, Tomita N, Huang XR, Li JH, Zhu HJ et al. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol 2003; 14: 1535–1548.

    Article  CAS  Google Scholar 

  28. Comerota AJ, Throm RC, Miller KA, Henry T, Chronos N, Laird J et al. Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J Vasc Surg 2002; 35: 930–936.

    Article  Google Scholar 

  29. Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM . Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 2000; 7: 2023–2027.

    Article  CAS  Google Scholar 

  30. Bommannan D, Menon GK, Okuyama H, Elias PM, Guy RH . Sonophoresis. II. Examination of the mechanism(s) of ultrasound-enhanced transdermal drug delivery. Pharm Res 1992; 9: 1043–1047.

    Article  CAS  Google Scholar 

  31. Postema M, van WA, Lancee CT, de JN . Ultrasound-induced encapsulated microbubble phenomena. Ultrasound Med Biol 2004; 30: 827–840.

    Article  Google Scholar 

  32. Riesz P, Kondo T . Free radical formation induced by ultrasound and its biological implications. Free Radic Biol Med 1992; 13: 247–270.

    Article  CAS  Google Scholar 

  33. Newman CM, Lawrie A, Brisken AF, Cumberland DC . Ultrasound gene therapy: on the road from concept to reality. Echocardiography 2001; 18: 339–347.

    Article  CAS  Google Scholar 

  34. Miller DL, Quddus J . Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice. Proc Natl Acad Sci USA 2000; 97: 10179–10184.

    Article  CAS  Google Scholar 

  35. Goldberg BB, Liu JB, Forsberg F . Ultrasound contrast agents: a review. Ultrasound Med Biol 1994; 20: 319–333.

    Article  CAS  Google Scholar 

  36. Manome Y, Nakayama N, Nakayama K, Furuhata H . Insonation facilitates plasmid DNA transfection into the central nervous system and microbubbles enhance the effect. Ultrasound Med Biol 2005; 31: 693–702.

    Article  Google Scholar 

  37. Lu QL, Liang HD, Partridge T, Blomley MJ . Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther 2003; 10: 396–405.

    Article  CAS  Google Scholar 

  38. Louis MH, Dutoit S, Denoux Y, Erbacher P, Deslandes E, Behr JP et al. Intraperitoneal linear polyethylenimine (L-PEI)-mediated gene delivery to ovarian carcinoma nodes in mice. Cancer Gene Ther 2006; 13: 367–374.

    Article  CAS  Google Scholar 

  39. Iwanaga K, Tominaga K, Yamamoto K, Habu M, Maeda H, Akifusa S et al. Local delivery system of cytotoxic agents to tumors by focused sonoporation. Cancer Gene Ther 2007; 14: 354–363.

    Article  CAS  Google Scholar 

  40. Manome Y, Nakamura M, Ohno T, Furuhata H . Ultrasound facilitates transduction of naked plasmid DNA into colon carcinoma cells in vitro and in vivo. Hum Gene Ther 2000; 11: 1521–1528.

    Article  CAS  Google Scholar 

  41. Skyba DM, Price RJ, Linka AZ, Skalak TC, Kaul S . Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation 1998; 98: 290–293.

    Article  CAS  Google Scholar 

  42. Vykhodtseva N, McDannold N, Martin H, Bronson RT, Hynynen K . Apoptosis in ultrasound-produced threshold lesions in the rabbit brain. Ultrasound Med Biol 2001; 27: 111–117.

    Article  CAS  Google Scholar 

  43. Pislaru SV, Pislaru C, Kinnick RR, Singh R, Gulati R, Greenleaf JF et al. Optimization of ultrasound-mediated gene transfer: comparison of contrast agents and ultrasound modalities. Eur Heart J 2003; 24: 1690–1698.

    Article  CAS  Google Scholar 

  44. Amabile PG, Waugh JM, Lewis TN, Elkins CJ, Janas W, Dake MD . High-efficiency endovascular gene delivery via therapeutic ultrasound. J Am Coll Cardiol 2001; 37: 1975–1980.

    Article  CAS  Google Scholar 

  45. Hoff CM, Cusick JL, Masse EM, Jackman RW, Nagy JA, Shockley TR . Modulation of transgene expression in mesothelial cells by activation of an inducible promoter. Nephrol Dial Transplant 1998; 13: 1420–1429.

    Article  CAS  Google Scholar 

  46. Aoki K, Furuhata S, Hatanaka K, Maeda M, Remy JS, Behr JP et al. Polyethylenimine-mediated gene transfer into pancreatic tumor dissemination in the murine peritoneal cavity. Gene Ther 2001; 8: 508–514.

    Article  CAS  Google Scholar 

  47. Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, Graham RW et al. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther 1999; 6: 482–497.

    Article  CAS  Google Scholar 

  48. Sourdeval M, Lemaire C, Brenner C, Boisvieux-Ulrich E, Marano F . Mechanisms of doxycycline-induced cytotoxicity on human bronchial epithelial cells. Front Biosci 2006; 11: 3036–3048.

    Article  CAS  Google Scholar 

  49. Plathow C, Lohr F, Divkovic G, Rademaker G, Farhan N, Peschke P et al. Focal gene induction in the liver of rats by a heat-inducible promoter using focused ultrasound hyperthermia: preliminary results. Invest Radiol 2005; 40: 729–735.

    Article  CAS  Google Scholar 

  50. Vilaboa N, Fenna M, Munson J, Roberts SM, Voellmy R . Novel gene switches for targeted and timed expression of proteins of interest. Mol Ther 2005; 12: 290–298.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H Guo was a Mrs. Ivy Wu Fellow at the University of Hong Kong. AWL. Tsang was supported by the L & T Charitable Foundation and the House of INDOCAFE. The gene therapy delivery system has been filed under US provisional patent number 60/858,784.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K N Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H., Leung, J., Chan, L. et al. Ultrasound-contrast agent mediated naked gene delivery in the peritoneal cavity of adult rat. Gene Ther 14, 1712–1720 (2007). https://doi.org/10.1038/sj.gt.3303040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303040

Keywords

This article is cited by

Search

Quick links