Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene transfer vector biodistribution: pivotal safety studies in clinical gene therapy development

Abstract

Techniques allowing for gene transfer vectors biodistribution investigation, in the frame of preclinical gene therapy development, are exposed. Emphasis is given on validation and test performance assessment. In the second part, specific gene vector distribution properties are reviewed (adenovirus, AAV, plasmid, retroviruses, herpes-derived vectors, germline transmission risks). The rationale for biodistribution by quantitative PCR, animal study and result interpretation is discussed. The importance and pivotal role of biodistribution study in gene transfer medicine development is shown through the determination of target organs for toxicity, germline transmission assessment and determination of risks of shedding and spreading of vectors in the gene transfer recipient and the environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cichon G et al. Intravenous administration of recombinant adenoviruses causes thrombocytopenia, anemia and erythroblastosis in rabbits. J Gene Med 1999; 1: 360–371.

    Article  CAS  PubMed  Google Scholar 

  2. Bernt KM et al. The effect of sequestration by nontarget tissues on anti-tumor efficacy of systemically applied, conditionally replicating adenovirus vectors. Mol Ther 2003; 8: 746–755.

    Article  CAS  PubMed  Google Scholar 

  3. Hiltunen MO et al. Biodistribution of adenoviral vector to nontarget tissues after local in vivo gene transfer to arterial wall using intravascular and periadventitial gene delivery methods. FASEB J 2000; 14: 2230–2236.

    Article  CAS  PubMed  Google Scholar 

  4. Vajanto I et al. Evaluation of angiogenesis and side effects in ischemic rabbit hindlimbs after intramuscular injection of adenoviral vectors encoding VEGF and LacZ. J Gene Med 2002; 4: 371–380.

    Article  CAS  PubMed  Google Scholar 

  5. Colmenero P et al. Recombinant Semliki forest virus vaccine vectors: the route of injection determines the localization of vector RNA and subsequent T cell response. Gene Therapy 2001; 8: 1307–1314.

    Article  CAS  PubMed  Google Scholar 

  6. Ohashi K, Park F, Kay MA . Role of hepatocyte direct hyperplasia in lentivirus-mediated liver transduction in vivo. Hum Gene Ther 2002; 13: 653–663.

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Banuelos J et al. Cirrhotic rat livers with extensive fibrosis can be safely transduced with clinical-grade adenoviral vectors. Evidence of cirrhosis reversion. Gene Therapy 2002; 9: 127–134.

    Article  CAS  PubMed  Google Scholar 

  8. Wood M et al. Biodistribution of an adenoviral vector carrying the luciferase reporter gene following intravesical or intravenous administration to a mouse. Cancer Gene Ther 1999; 6: 367–372.

    Article  CAS  PubMed  Google Scholar 

  9. Kanerva A et al. Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses. Mol Ther 2002; 5: 695–704.

    Article  CAS  PubMed  Google Scholar 

  10. Alemany R, Curiel DT . CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Therapy 2001; 8: 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  11. Peng KW et al. Organ distribution of gene expression after intravenous infusion of targeted and untargeted lentiviral vectors. Gene Therapy 2001; 8: 1456–1463.

    Article  CAS  PubMed  Google Scholar 

  12. Pan D et al. Biodistribution and toxicity studies of VSVG-pseudotyped lentiviral vector after intravenous administration in mice with the observation of in vivo transduction of bone marrow. Mol Ther 2002; 6: 19–29.

    Article  CAS  PubMed  Google Scholar 

  13. Hanke T et al. Lack of toxicity and persistence in the mouse associated with administration of candidate DNA- and modified vaccinia virus Ankara (MVA)-based HIV vaccines for Kenya. Vaccine 2002; 21: 108–114.

    Article  CAS  PubMed  Google Scholar 

  14. Klein D, Bugl B, Gunzburg WH, Salmons B . Accurate estimation of transduction efficiency necessitates a multiplex real-time PCR. Gene Therapy 2000; 7: 458–463.

    Article  CAS  PubMed  Google Scholar 

  15. Wildner O, Morris JC . Subcutaneous administration of a replication-competent adenovirus expressing HSV-tk to cotton rats: dissemination, persistence, shedding, and pathogenicity. Hum Gene Ther 2002; 13: 101–112.

    Article  CAS  PubMed  Google Scholar 

  16. Morris-Downes MM et al. Semliki forest virus-based vaccines: persistence, distribution and pathological analysis in two animal systems. Vaccine 2001; 19: 1978–1988.

    Article  CAS  PubMed  Google Scholar 

  17. Lai L et al. A preliminary evaluation of recombinant adeno-associated virus biodistribution in rhesus monkeys after intrahepatic inoculation in utero. Hum Gene Ther 2002; 13: 2027–2039.

    Article  CAS  PubMed  Google Scholar 

  18. Todo T et al. Viral shedding and biodistribution of G207, a multimutated, conditionally replicating herpes simplex virus type 1, after intracerebral inoculation in aotus. Mol Ther 2000; 2: 588–595.

    Article  CAS  PubMed  Google Scholar 

  19. Oh YK et al. Prolonged organ retention and safety of plasmid DNA administered in polyethylenimine complexes. Gene Therapy 2001; 8: 1587–1592.

    Article  CAS  PubMed  Google Scholar 

  20. Oh YK et al. Nasal absorption and biodistribution of plasmid DNA: an alternative route of DNA vaccine delivery. Vaccine 2001; 19: 4519–4525.

    Article  CAS  PubMed  Google Scholar 

  21. Lovatt A . Applications of quantitative PCR in the biosafety and genetic stability assessment of biotechnology products. J Biotechnol 2002; 82: 279–300.

    CAS  PubMed  Google Scholar 

  22. Verdier F, Descotes J . Preclinical safety evaluation of human gene therapy products. Toxicol Sci 1999; 47: 9–15.

    Article  CAS  PubMed  Google Scholar 

  23. Imboden M et al. Safety of interleukin-12 gene therapy against cancer: a murine biodistribution and toxicity study. Hum Gene Ther 2003; 14: 1037–1048.

    Article  CAS  PubMed  Google Scholar 

  24. Haworth R, Pilling AM . The PCR assay in the preclinical safety evaluation of nucleic acid medicines. Hum Exp Toxicol 2000; 19: 267–276.

    Article  CAS  PubMed  Google Scholar 

  25. Zinn KR et al. Imaging and tissue biodistribution of 99mTc-labeled adenovirus knob (serotype 5). Gene Therapy 1998; 5: 798–808.

    Article  CAS  PubMed  Google Scholar 

  26. Bogdanov Jr A, Tung CH, Bredow S, Weissleder R . DNA binding chelates for nonviral gene delivery imaging. Gene Therapy 2001; 8: 515–522.

    Article  CAS  PubMed  Google Scholar 

  27. Charrois GJ, Allen TM . Rate of biodistribution of STEALTH(R) liposomes to tumor and skin: influence of liposome diameter and implications for toxicity and therapeutic activity. Biochim Biophys Acta 2003; 1609: 102–108.

    Article  CAS  PubMed  Google Scholar 

  28. Collard WT et al. Biodistribution, metabolism, and in vivo gene expression of low molecular weight glycopeptide polyethylene glycol peptide DNA co-condensates. J Pharm Sci 2000; 89: 499–512.

    Article  CAS  PubMed  Google Scholar 

  29. Cui Z, Mumper RJ . Plasmid DNA-entrapped nanoparticles engineered from microemulsion precursors: in vitro and in vivo evaluation. Bioconjug Chem 2002; 13: 1319–1327.

    Article  CAS  PubMed  Google Scholar 

  30. Kosuga M et al. Adenovirus-mediated gene therapy for mucopolysaccharidosis VII: involvement of cross-correction in wide-spread distribution of the gene products and long-term effects of CTLA-4Ig coexpression. Mol Ther 2000; 1: 406–413.

    Article  CAS  PubMed  Google Scholar 

  31. Hackett NR et al. Use of quantitative TaqMan real-time PCR to track the time-dependent distribution of gene transfer vectors in vivo. Mol Ther 2000; 2: 649–656.

    Article  CAS  PubMed  Google Scholar 

  32. Senoo M et al. Adenovirus-mediated in utero gene transfer in mice and guinea pigs: tissue distribution of recombinant adenovirus determined by quantitative TaqMan-polymerase chain reaction assay. Mol Genet Metab 2000; 69: 269–276.

    Article  CAS  PubMed  Google Scholar 

  33. Turunen MP et al. Peptide-retargeted adenovirus encoding a tissue inhibitor of metalloproteinase-1 decreases restenosis after intravascular gene transfer. Mol Ther 2002; 6: 306–312.

    Article  CAS  PubMed  Google Scholar 

  34. Paielli DL et al. Evaluation of the biodistribution, persistence, toxicity, and potential of germ-line transmission of a replication-competent human adenovirus following intraprostatic administration in the mouse. Mol Ther 2000; 1: 263–274.

    Article  CAS  PubMed  Google Scholar 

  35. Lehtolainen P et al. Baculoviruses exhibit restricted cell type specificity in rat brain: a comparison of baculovirus- and adenovirus-mediated intracerebral gene transfer in vivo. Gene Therapy 2002; 9: 1693–1699.

    Article  CAS  PubMed  Google Scholar 

  36. Ponnazhagan S et al. Adeno-associated virus 2-mediated gene transfer in vivo: organ-tropism and expression of transduced sequences in mice. Gene 1997; 190: 203–210.

    Article  CAS  PubMed  Google Scholar 

  37. Nathwani AC et al. Factors influencing in vivo transduction by recombinant adeno-associated viral vectors expressing the human factor IX cDNA. Blood 2001; 97: 1258–1265.

    Article  CAS  PubMed  Google Scholar 

  38. Watson GL et al. Treatment of lysosomal storage disease in MPS VII mice using a recombinant adeno-associated virus. Gene Therapy 1998; 5: 1642–1649.

    Article  CAS  PubMed  Google Scholar 

  39. Favre D et al. Immediate and long-term safety of recombinant adeno-associated virus injection into the nonhuman primate muscle. Mol Ther 2001; 4: 559–566.

    Article  CAS  PubMed  Google Scholar 

  40. Song S et al. Intramuscular administration of recombinant adeno-associated virus 2 alpha-1 antitrypsin (rAAV-SERPINA1) vectors in a nonhuman primate model: safety and immunologic aspects. Mol Ther 2002; 6: 329–335.

    Article  CAS  PubMed  Google Scholar 

  41. Arruda VR et al. Lack of germline transmission of vector sequences following systemic administration of recombinant AAV-2 vector in males. Mol Ther 2001; 4: 586–592.

    Article  CAS  PubMed  Google Scholar 

  42. Herzog RW et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med 1999; 5: 56–63.

    Article  CAS  PubMed  Google Scholar 

  43. Monahan PE et al. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Therapy 1998; 5: 40–49.

    Article  CAS  PubMed  Google Scholar 

  44. Chan JM et al. Intraarticular gene transfer of TNFR:Fc suppresses experimental arthritis with reduced systemic distribution of the gene product. Mol Ther 2002; 6: 727–736.

    Article  CAS  PubMed  Google Scholar 

  45. Kay MA et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000; 24: 257–261.

    Article  CAS  PubMed  Google Scholar 

  46. Lew D et al. Cancer gene therapy using plasmid DNA: pharmacokinetic study of DNA following injection in mice. Hum Gene Ther 1995; 6: 553–564.

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y et al. Cationic liposome-mediated intravenous gene delivery. J Biol Chem 1995; 270: 24864–24870.

    Article  CAS  PubMed  Google Scholar 

  48. Mahato RI, Kawabata K, Takakura Y, Hashida M . In vivo disposition characteristics of plasmid DNA complexed with cationic liposomes. J Drug Target 1995; 3: 149–157.

    Article  CAS  PubMed  Google Scholar 

  49. Mahato RI et al. Physicochemical and pharmacokinetic characteristics of plasmid DNA/cationic liposome complexes. J Pharm Sci 1995; 84: 1267–1271.

    Article  CAS  PubMed  Google Scholar 

  50. Thierry AR et al. Systemic gene therapy: biodistribution and long-term expression of a transgene in mice. Proc Natl Acad Sci USA 1995; 92: 9742–9746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nabel EG et al. Gene transfer in vivo with DNA–liposome complexes: lack of autoimmunity and gonadal localization. Hum Gene Ther 1992; 3: 649–656.

    Article  CAS  PubMed  Google Scholar 

  52. Stewart MJ et al. Gene transfer in vivo with DNA–liposome complexes: safety and acute toxicity in mice. Hum Gene Ther 1992; 3: 267–275.

    Article  CAS  PubMed  Google Scholar 

  53. Nabel GJ et al. Direct gene transfer with DNA–liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci USA 1993; 90: 11307–11311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stopeck AT et al. Phase I study of direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7, in patients with metastatic melanoma. J Clin Oncol 1997; 15: 341–349.

    Article  CAS  PubMed  Google Scholar 

  55. Thomas SM et al. Tissue distribution of liposome-mediated epidermal growth factor receptor antisense gene therapy. Cancer Gene Ther 2003; 10: 518–528.

    Article  CAS  PubMed  Google Scholar 

  56. Koshkina NV et al. Biodistribution and pharmacokinetics of aerosol and intravenously administered DNA–polyethyleneimine complexes: optimization of pulmonary delivery and retention. Mol Ther 2003; 8: 249–254.

    Article  CAS  PubMed  Google Scholar 

  57. Parker SE et al. Plasmid DNA malaria vaccine: tissue distribution and safety studies in mice and rabbits. Hum Gene Ther 1999; 10: 741–758.

    Article  CAS  PubMed  Google Scholar 

  58. Dagnaes-Hansen F et al. Physiological effects of human growth hormone produced after hydrodynamic gene transfer of a plasmid vector containing the human ubiquitin promotor. J Mol Med 2002; 80: 665–670; Epub 2002 Sep 2024.

    Article  CAS  PubMed  Google Scholar 

  59. Deisboeck TS et al. Development of a novel non-human primate model for preclinical gene vector safety studies. Determining the effects of intracerebral HSV-1 inoculation in the common marmoset: a comparative study. Gene Therapy 2003; 10: 1225–1233.

    Article  CAS  PubMed  Google Scholar 

  60. Varghese S et al. Preclinical safety evaluation of G207, a replication-competent herpes simplex virus type 1, inoculated intraprostatically in mice and nonhuman primates. Hum Gene Ther 2001; 12: 999–1010.

    Article  CAS  PubMed  Google Scholar 

  61. Loudon PT et al. Preclinical safety testing of DISC-hGMCSF to support phase I clinical trials in cancer patients. J Gene Med 2001; 3: 458–467.

    Article  CAS  PubMed  Google Scholar 

  62. Indraccolo S et al. Gene transfer in ovarian cancer cells: a comparison between retroviral and lentiviral vectors. Cancer Res 2002; 62: 6099–6107.

    CAS  PubMed  Google Scholar 

  63. MacKenzie TC et al. Efficient transduction of liver and muscle after in utero injection of lentiviral vectors with different pseudotypes. Mol Ther 2002; 6: 349–358.

    Article  CAS  PubMed  Google Scholar 

  64. Behrens A et al. Retroviral gene therapy vectors for prevention of excimer laser-induced corneal haze. Invest Ophthalmol Vis Sci 2002; 43: 968–977.

    PubMed  Google Scholar 

  65. Ye X et al. Evaluating the potential of germ line transmission after intravenous administration of recombinant adenovirus in the C3H mouse. Hum Gene Ther 1998; 9: 2135–2142.

    Article  CAS  PubMed  Google Scholar 

  66. Peters AH et al. Absence of germline infection in male mice following intraventricular injection of adenovirus. Mol Ther 2001; 4: 603–613.

    Article  CAS  PubMed  Google Scholar 

  67. Pachori AS et al. Potential for germ line transmission after intramyocardial gene delivery by adeno-associated virus. Biochem Biophys Res Commun 2004; 313: 528–533.

    Article  CAS  PubMed  Google Scholar 

  68. Couto L, Parker A, Gordon JW . Direct exposure of mouse spermatozoa to very high concentrations of a serotype-2 adeno-associated virus gene therapy vector fails to lead to germ cell transduction. Hum Gene Ther 2004; 15: 287–291.

    Article  CAS  PubMed  Google Scholar 

  69. Frederickson RM, Carter BJ, Pilaro AM . Nonclinical toxicology in support of licensure of gene therapies. Arlington, VA, USA, March 13–14, 2003. Mol Ther 2003; 8: 8–10.

    Article  CAS  PubMed  Google Scholar 

  70. Oualikene W, Gonin P, Eloit M . Lack of evidence of phenotypic complementation of E1A/E1B-deleted adenovirus type 5 upon superinfection by wild-type virus in the cotton rat. J Virol 1995; 69: 6518–6524.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Stribling R et al. Aerosol gene delivery in vivo. Proc Natl Acad Sci USA 1992; 89: 11277–11281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sene C et al. Aerosol-mediated delivery of recombinant adenovirus to the airways of nonhuman primates. Hum Gene Ther 1995; 6: 1587–1593.

    Article  CAS  PubMed  Google Scholar 

  73. Bellon G et al. Aerosol administration of a recombinant adenovirus expressing CFTR to cystic fibrosis patients: a phase I clinical trial. Hum Gene Ther 1997; 8: 15–25.

    Article  CAS  PubMed  Google Scholar 

  74. Ramirez JC et al. Tissue distribution of the Ankara strain of vaccinia virus (MVA) after mucosal or systemic administration. Arch Virol 2003; 148: 827–839.

    Article  CAS  PubMed  Google Scholar 

  75. Brunetti-Pierri N et al. Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther 2004; 15: 35–46.

    Article  CAS  PubMed  Google Scholar 

  76. Ferber D . Gene therapy. Safer and virus-free? Science 2001; 294: 1638–1642.

    Article  CAS  PubMed  Google Scholar 

  77. Guillaume C et al. Aerosolization of cationic lipid-DNA complexes: lipoplex characterization and optimization of aerosol delivery conditions. Biochem Biophys Res Commun 2001; 286: 464–471.

    Article  CAS  PubMed  Google Scholar 

  78. Eastman SJ et al. Optimization of formulations and conditions for the aerosol delivery of functional cationic lipid:DNA complexes. Hum Gene Ther 1997; 8: 313–322.

    Article  CAS  PubMed  Google Scholar 

  79. Sawa T et al. Intraluminal water increases expression of plasmid DNA in rat lung. Hum Gene Ther 1996; 7: 933–941.

    Article  CAS  PubMed  Google Scholar 

  80. Schreier H, Gagne L, Conary JT, Laurian G . Simulated lung transfection by nebulization of liposome cDNA complexes using a cascade impactor seeded with 2-CFSME0-cells. J Aerosol Med 1998; 11: 1–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonin, P., Gaillard, C. Gene transfer vector biodistribution: pivotal safety studies in clinical gene therapy development. Gene Ther 11 (Suppl 1), S98–S108 (2004). https://doi.org/10.1038/sj.gt.3302378

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302378

Keywords

This article is cited by

Search

Quick links