Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Adenovirus-mediated gene transfer of interferon α improves dimethylnitrosamine-induced liver cirrhosis in rat model

Abstract

Several lines of evidence suggest that interferon (IFN)-α is effective in suppression of liver cirrhosis (LC) as well as hepatitis C virus (HCV) infection, which is a major cause of LC in Japan. However, IFN-α often causes systemic toxicity such as flu-like symptoms, which precludes the IFN-α dose escalation required for clinical efficacy. Since IFN-α is rapidly degraded in the blood circulation, only a small amount of subcutaneously injected IFN-α protein can reach the target organ, the liver. It is expected that on-site IFN-α production in the liver overcomes the limitation of the conventional parenteral IFN-α administration. An adenovirus vector expressing the rat IFN-α gene (AxCA-rIFN) was injected intravenously into rats with dimethylnitrosamine-induced LC. While the subcutaneous IFN-α protein injection led to a transient elevation of the cytokine both in the liver and serum, the vector-mediated IFN-α gene transduction induced a significant amount of IFN-α detected in the liver but not in the serum. The injection of AxCA-rIFN prevented the progression of the rat LC, and improved the survival rate of the treated rats. Although no significant toxicity was noted in the animals, we showed that IFN-α gene expression in the liver can be efficiently downregulated by the Cre/loxP-mediated shut-off system, in case the IFN-α overdose becomes a problem. The study suggested for the first time the advantage and feasibility of IFN-α gene therapy for LC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Alter MJ, Mast EE . The epidemiology of viral hepatitis in the United States. Gastroenterol Clin North Am 1994; 23: 437–455.

    CAS  PubMed  Google Scholar 

  2. Hoofnagle JH, di Bisceglie AM . The treatment of chronic viral hepatitis. N Engl J Med 1997; 336: 347–356.

    Article  CAS  PubMed  Google Scholar 

  3. Schalm SW, Fattovich G, Brouwer JT . Therapy of hepatitis C: patients with cirrhosis. Hepatology 1997; 26: 128S–132S.

    Article  CAS  PubMed  Google Scholar 

  4. Bonkovsky HL . Therapy of hepatitis C: other options. Hepatology 1997; 26: 143S–151S.

    Article  CAS  PubMed  Google Scholar 

  5. Di Bisceglie AM et al. Recombinant interferon alfa therapy for chronic hepatitis C. A randomized, double-blind, placebo-controlled trial. N Engl J Med 1989; 321: 1506–1510.

    Article  CAS  PubMed  Google Scholar 

  6. Poynard T et al. Meta-analysis of interferon randomized trials in the treatment of viral hepatitis C: effects of dose and duration. Hepatology 1996; 24: 778–789.

    Article  CAS  PubMed  Google Scholar 

  7. Fort J et al. Effects of long-term administration of interferon alpha in two models of liver fibrosis in rats. J Hepatol 1998; 29: 263–270.

    Article  CAS  PubMed  Google Scholar 

  8. Camps J et al. Randomised trial of lymphoblastoid alpha-interferon in chronic hepatitis C. Effects on inflammation, fibrogenesis and viremia. J Hepatol 1993; 17: 390–396.

    Article  CAS  PubMed  Google Scholar 

  9. Castilla A, Prieto J, Fausto N . Transforming growth factors beta 1 and alpha in chronic liver disease. Effects of interferon alfa therapy. N Engl J Med 1991; 324: 933–940.

    Article  CAS  PubMed  Google Scholar 

  10. Dufour JF, DeLellis R, Kaplan MM . Regression of hepatic fibrosis in hepatitis C with long-term interferon treatment. Dig Dis Sci 1998; 43: 2573–2576.

    Article  CAS  PubMed  Google Scholar 

  11. Okanoue T et al. Interferon therapy lowers the rate of progression to hepatocellular carcinoma in chronic hepatitis C but not significantly in an advanced stage: a retrospective study in 1148 patients. Viral Hepatitis Therapy Study Group. J Hepatol 1999; 30: 653–659.

    Article  CAS  PubMed  Google Scholar 

  12. Schvarcz R et al. Histological outcome in interferon alpha-2b treated patients with chronic posttransfusion non-A, non-B hepatitis. Liver 1991; 11: 30–38.

    Article  CAS  PubMed  Google Scholar 

  13. Yagura M et al. Changes of liver fibrosis in chronic hepatitis C patients with no response to interferon-alpha therapy: including quantitative assessment by a morphometric method. J Gastroenterol 2000; 35: 105–111.

    Article  CAS  PubMed  Google Scholar 

  14. Uemura I . Pharmacokinetics of recombinant human interferon alpha in rat. Kiso to Rinsho 1985; 19: 205–212.

    Google Scholar 

  15. Nakamura T, Akiyoshi H, Saito I, Sato K . Adenovirus-mediated gene expression in the septal cells of cirrhotic rat livers. J Hepatol 1999; 30: 101–106.

    Article  CAS  PubMed  Google Scholar 

  16. Jezequel AM et al. A morphological study of the early stages of hepatic fibrosis induced by low doses of dimethylnitrosamine in the rat. J Hepatol 1987; 5: 174–181.

    Article  CAS  PubMed  Google Scholar 

  17. Friedman SL . Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med 1993; 328: 1828–1835.

    Article  CAS  PubMed  Google Scholar 

  18. Jenkins SA et al. A dimethylnitrosamine-induced model of cirrhosis and portal hypertension in the rat. J Hepatol 1985; 1: 489–499.

    Article  CAS  PubMed  Google Scholar 

  19. Lopez-De Leon A, Rojkind M . A simple micromethod for collagen and total protein determination in formalin-fixed paraffin-embedded sections. J Histochem Cytochem 1985; 33: 737–743.

    Article  CAS  PubMed  Google Scholar 

  20. Bruck R et al. Prevention of hepatic cirrhosis in rats by hydroxyl radical scavengers. J Hepatol 2001; 35: 457–464.

    Article  CAS  PubMed  Google Scholar 

  21. Woessner JF . The determination of hydroxyproline in tissue and protein samples containing small proportion of imino acid. Arch Biochem Biophys 1961; 93: 440–447.

    Article  CAS  PubMed  Google Scholar 

  22. Fujimoto J, Kaneda Y . Reversing liver cirrhosis: impact of gene therapy for liver cirrhosis. Gene Ther 1999; 6: 305–306.

    Article  CAS  PubMed  Google Scholar 

  23. Lee HS et al. Expression of matrix metalloproteinases in spontaneous regression of liver fibrosis. Hepatogastroenterology 2001; 48: 1114–1117.

    CAS  PubMed  Google Scholar 

  24. Watanabe T et al. Gene expression of interstitial collagenase in both progressive and recovery phase of rat liver fibrosis induced by carbon tetrachloride. J Hepatol 2000; 33: 224–235.

    Article  CAS  PubMed  Google Scholar 

  25. Overall CM, Wrana JL, Sodek J . Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression. J Biol Chem 1991; 266: 14064–14071.

    CAS  PubMed  Google Scholar 

  26. Poncelet AC, Schnaper HW . Regulation of human mesangial cell collagen expression by transforming growth factor-beta 1. Am J Physiol 1998; 275: F458–F466.

    CAS  PubMed  Google Scholar 

  27. Ikeda K et al. In vitro migratory potential of rat quiescent hepatic stellate cells and its augmentation by cell activation. Hepatology 1999; 29: 1760–1767.

    Article  CAS  PubMed  Google Scholar 

  28. Iredale JP et al. Tissue Inhibitor of metalloproteinase-1 messenger RNA expression is enhanced relative to interstitial collagenase messenger RNA in experimental liver injury and fibrosis. Hepatology 1996; 24: 176–184.

    Article  CAS  PubMed  Google Scholar 

  29. Qi Z et al. Blockade of type beta transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proc Natl Acad Sci USA 1999; 96: 2345–2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ueki T et al. Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat Med 1999; 5: 226–230.

    Article  CAS  PubMed  Google Scholar 

  31. Rudolph KL et al. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 2000; 287: 1253–1258.

    Article  CAS  PubMed  Google Scholar 

  32. Salgado S et al. Liver cirrhosis is reverted by urokinase-type plasminogen activator gene therapy. Mol Ther 2001; 2: 545–551.

    Article  Google Scholar 

  33. Takayama H et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci USA 1997; 94: 701–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eto T, Takahashi H . Enhanced inhibition of hepatitis B virus production by asialoglycoprotein receptor-directed interferon. Nat Med 1999; 5: 577–581.

    Article  CAS  PubMed  Google Scholar 

  35. Protzer U et al. Interferon gene transfer by a hepatitis B virus vector efficiently suppresses wild-type virus infection. Proc Natl Acad Sci USA 1999; 96: 10818–10823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Roos WK et al. Isolated-organ perfusion for local gene delivery: efficient adenovirus-mediated gene transfer into the liver. Gene Ther 1997; 4: 55–62.

    Article  CAS  PubMed  Google Scholar 

  37. Ferry N, Heard JM . Liver-directed gene transfer vectors. Hum Gene Ther 1998; 9: 1975–1981.

    Article  CAS  PubMed  Google Scholar 

  38. Garcia-Banuelos J et al. Cirrhotic rat livers with extensive fibrosis can be safely transduced with clinical-grade adenoviral vectors. Evidence of cirrhosis reversion. Gene Ther 2002; 9: 127–134.

    Article  CAS  PubMed  Google Scholar 

  39. Nakatani T et al. Assessment of efficiency and safety of adenovirus mediated gene transfer into normal and damaged murine livers. Gut 2000; 47: 563–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Akli S et al. Transfer of a foreign gene into the brain using adenovirus vectors. Nat Genet 1993; 3: 224–228.

    Article  CAS  PubMed  Google Scholar 

  41. Hermens WT, Verhaagen J . Adenoviral vector-mediated gene expression in the nervous system of immunocompetent Wistar and T cell-deficient nude rats: preferential survival of transduced astroglial cells in nude rats. Hum Gene Ther 1997; 8: 1049–1063.

    Article  CAS  PubMed  Google Scholar 

  42. Anderson WF . Human gene therapy. Nature 1998; 392: 25–30.

    Article  CAS  PubMed  Google Scholar 

  43. Haecker SE et al. In vivo expression of full-length human dystrophin from adenoviral vectors deleted of all viral genes. Hum Gene Ther 1996; 7: 1907–1914.

    Article  CAS  PubMed  Google Scholar 

  44. Lieber A, He CY, Kirillova I, Kay MA . Recombinant adenoviruses with large deletions generated by Cre-mediated ex-cision exhibit different biological properties compared with first-generation vectors in vitro and in vivo. J Virol 1996; 70: 8944–8960.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Langer R . Drug delivery and targeting. Nature 1998; 392: 5–10.

    CAS  PubMed  Google Scholar 

  46. Miyake S et al. Efficient generation of recombinant adenoviruses using adenovirus DNA–terminal protein complex and a cosmid bearing the full-length virus genome. Proc Natl Acad Sci USA 1996; 93: 1320–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Aoki K et al. Restricted expression of an adenoviral vector encoding Fas ligand (CD95L) enhances safety for cancer gene therapy. Mol Ther 2000; 1: 555–565.

    Article  CAS  PubMed  Google Scholar 

  48. Niwa H, Yamamura K, Miyazaki J . Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991; 108: 193–199.

    Article  CAS  PubMed  Google Scholar 

  49. Aoki K et al. Polyethylenimine-mediated gene transfer into pancreatic tumor dissemination in the murine peritoneal cavity. Gene Ther 2001; 8: 508–514.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant-in-aid for the 2nd Term Comprehensive 10-year Strategy for Japan, and by grants-in-aid for Cancer Research from the Ministry of Health, Labour and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, K., Aoki, K., Ohnami, S. et al. Adenovirus-mediated gene transfer of interferon α improves dimethylnitrosamine-induced liver cirrhosis in rat model. Gene Ther 10, 765–773 (2003). https://doi.org/10.1038/sj.gt.3301949

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301949

Keywords

This article is cited by

Search

Quick links