Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A neovascularized organoid derived from retrovirally engineered bone marrow stroma leads to prolonged in vivo systemic delivery of erythropoietin in nonmyeloablated, immunocompetent mice

Abstract

Marrow stromal cells (MSCs) are postnatal progenitor cells that can be easily cultured ex vivo to large amounts. This feature is attractive for cell therapy applications where genetically engineered MSCs could serve as an autologous cellular vehicle for the delivery of therapeutic proteins. The usefulness of MSCs in transgenic cell therapy will rely upon their potential to engraft in nonmyeloablated, immunocompetent recipients. Further, the ability to deliver MSCs subcutaneously – as opposed to intravenous or intraperitoneal infusions – would enhance safety by providing an easily accessible, and retrievable, artificial subcutaneous implant in a clinical setting. To test this hypothesis, MSCs were retrovirally engineered to secrete mouse erythropoietin (Epo) and their effect was ascertained in nonmyeloablated syngeneic mice. Epo-secreting MSCs when administered as ‘free’ cells by subcutaneous or intraperitoneal injection, at the same cell dose, led to a significant – yet temporary – hematocrit increase to over 70% for 55±13 days. In contrast, in mice implanted subcutaneously with Matrigel™-embedded MSCs, the hematocrit persisted at levels >80% for over 110 days in four of six mice (P<0.05 logrank). Moreover, Epo-secreting MSCs mixed in Matrigel elicited and directly participated in blood vessel formation de novo reflecting their mesenchymal plasticity. MSCs embedded in human-compatible bovine collagen matrix also led to a hematocrit >70% for 75±8.9 days. In conclusion, matrix-embedded MSCs will spontaneously form a neovascularized organoid that supports the release of a soluble plasma protein directly into the bloodstream for a sustained pharmacological effect in nonmyeloablated recipients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Maione D et al. Prolonged expression and effective readministration of erythropoietin delivered with a fully deleted adenoviral vector. Hum Gene Ther 2000; 11: 859–868.

    Article  CAS  PubMed  Google Scholar 

  2. Descamps V et al. Erythropoietin gene transfer and expression in adult normal mice: use of an adenovirus vector. Hum Gene Ther 1994; 5: 979–985.

    Article  CAS  PubMed  Google Scholar 

  3. Tripathy SK, Black HB, Goldwasser E, Leiden JM . Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat Med 1996; 2: 545–550.

    Article  CAS  PubMed  Google Scholar 

  4. Tripathy SK et al. Stable delivery of physiologic levels of recombinant erythropoietin to the systemic circulation by intramuscular injection of replication-defective adenovirus. Proc Natl Acad Sci USA 1994; 91: 11557–11561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Svensson EC et al. Long-term erythropoietin expression in rodents and non-human primates following intramuscular injection of a replication-defective adenoviral vector. Hum Gene Ther 1997; 8: 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  6. Kessler PD et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA 1996; 93: 14082–14087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Snyder RO et al. Efficient and stable adeno-associated virus-mediated transduction in the skeletal muscle of adult immunocompetent mice. Hum Gene Ther 1997; 8: 1891–1900.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou S, Murphy JE, Escobedo JA, Dwarki VJ . Adeno-associated virus-mediated delivery of erythropoietin leads to sustained elevation of hematocrit in nonhuman primates. Gene Ther 1998; 5: 665–670.

    Article  CAS  PubMed  Google Scholar 

  9. Bohl D et al. Improvement of erythropoiesis in beta-thalassemic mice by continuous erythropoietin delivery from muscle. Blood 2000; 95: 2793–2798.

    CAS  PubMed  Google Scholar 

  10. Beall CJ et al. Transfer of the feline erythropoietin gene to cats using a recombinant adeno-associated virus vector. Gene Ther 2000; 7: 534–539.

    Article  CAS  PubMed  Google Scholar 

  11. Benihoud K, Yeh P, Perricaudet M . Adenovirus vectors for gene delivery [review] [63 refs]. Curr Opin Biotechnol 1999; 10: 440–447.

    Article  CAS  PubMed  Google Scholar 

  12. Monahan PE, Samulski RJ . AAV vectors: is clinical success on the horizon? [review] [48 refs]. Gene Ther 2000; 7: 24–30.

    Article  CAS  PubMed  Google Scholar 

  13. Moskalenko M et al. Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure. J Virol 2000; 74: 1761–1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lochmuller H et al. Immunosuppression by FK506 markedly prolongs expression of adenovirus-delivered transgene in skeletal muscles of adult dystrophic [mdx] mice. Biochem Biophys Res Commun 1995; 213: 569–574.

    Article  CAS  PubMed  Google Scholar 

  15. Miller HI . Gene therapy on trial. Science 2000; 287: 591–592.

    Article  CAS  PubMed  Google Scholar 

  16. Wadman M . NIH under fire over gene-therapy trials. Nature 2000; 403: 237.

    Article  CAS  PubMed  Google Scholar 

  17. Jenks S . Gene therapy death – ‘Everyone has to share in the guilt’. J Nat Cancer Inst 2000; 92: 98–100.

    Article  CAS  PubMed  Google Scholar 

  18. Donsante A et al. Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors [letter; comment]. Gene Ther 2001; 8: 1343–1346.

    Article  CAS  PubMed  Google Scholar 

  19. Rizzuto G et al. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc Natl Acad Sci USA 1999; 96: 6417–6422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Payen E et al. Improvement of mouse beta-thalassemia by electrotransfer of erythropoietin cDNA. Exp Hematol 2001; 29: 295–300.

    Article  CAS  PubMed  Google Scholar 

  21. Rizzuto G et al. Gene electrotransfer results in a high-level transduction of rat skeletal muscle and corrects anemia of renal failure. Hum Gene Ther 2000; 11: 1891–1900.

    Article  CAS  PubMed  Google Scholar 

  22. Maruyama H et al. Continuous erythropoietin delivery by muscle-targeted gene transfer using in vivo electroporation. Hum Gene Ther 2000; 11: 429–437.

    Article  CAS  PubMed  Google Scholar 

  23. Kreiss P, Bettan M, Crouzet J, Scherman D . Erythropoietin secretion and physiological effect in mouse after intramuscular plasmid DNA electrotransfer. J Gene Med 1999; 1: 245–250.

    Article  CAS  PubMed  Google Scholar 

  24. Jiao S et al. Direct gene transfer into nonhuman primate myofibers in vivo. Hum Gene Ther 1992; 3: 21–33.

    Article  CAS  PubMed  Google Scholar 

  25. Tripathy SK et al. Long-term expression of erythropoietin in the systemic circulation of mice after intramuscular injection of a plasmid DNA vector. Proc Natl Acad Sci USA 1996; 93: 10876–10880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roth DA et al. Non-viral gene transfer of blood coagulation factor VIII in patients with severe hemophilia A. Blood 2000; 96: 590 (abstract).

    Google Scholar 

  27. Ding L et al. Bone marrow stromal cells as a vehicle for gene transfer. Gene Ther 1999; 6: 1611–1616.

    Article  CAS  PubMed  Google Scholar 

  28. Clark BR, Keating A . Biology of bone marrow stroma [review] [57 refs]. Ann NY Acad Sci 1995; 770: 70–78.

    Article  CAS  PubMed  Google Scholar 

  29. Deans RJ, Moseley AB . Mesenchymal stem cells: biology and potential clinical uses [review] [92 refs]. Exp Hematol 2000; 28: 875–884.

    Article  CAS  PubMed  Google Scholar 

  30. Prockop DJ . Marrow stromal cells as stem cells for nonhematopoietic tissues [review] [32 refs]. Science 1997; 276: 71–74.

    Article  CAS  PubMed  Google Scholar 

  31. Gerson SL . Mesenchymal stem cells: no longer second class marrow citizens [news; comment]. Nat Med 1999; 5: 262–264.

    Article  CAS  PubMed  Google Scholar 

  32. Makino S et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999; 103: 697–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reyes M et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001; 98: 2615–2625.

    Article  CAS  PubMed  Google Scholar 

  34. Horwitz EM et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999; 5: 309–313.

    Article  CAS  PubMed  Google Scholar 

  35. Horwitz EM et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001; 97: 1227–1231.

    Article  CAS  PubMed  Google Scholar 

  36. Keating A et al. Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature 1982; 298: 280–283.

    Article  CAS  PubMed  Google Scholar 

  37. Jaalouk DE et al. Glucocorticoid-inducible retrovector for regulated transgene expression in genetically engineered bone marrow stromal cells. Hum Gene Ther 2000; 11: 1837–1849.

    Article  CAS  PubMed  Google Scholar 

  38. Chiang GG et al. Bone marrow stromal cell-mediated gene therapy for hemophilia A: in vitro expression of human factor VIII with high biological activity requires the inclusion of the proteolytic site at amino acid 1648. Hum Gene Ther 1999; 10: 61–76.

    Article  CAS  PubMed  Google Scholar 

  39. Hurwitz DR et al. Systemic delivery of human growth hormone or human factor IX in dogs by reintroduced genetically modified autologous bone marrow stromal cells. Hum Gene Ther 1997; 8: 137–156.

    Article  CAS  PubMed  Google Scholar 

  40. Keating A, Guinn BA, Laraya P, Wang XH . Human marrow stromal cells electrotransfected with human FIX cDNA engraft in SCID mice and transcribe human Factor IX. Exp Hematol 1996; 24: 1056 (abstract).

    Google Scholar 

  41. Eliopoulos N, Crosato M, and Galipeau J . High-level erythropoietin production from genetically engineered bone marrow stroma implanted in non-myeloablated, immunocompetent mice. Blood 2000; 96: 802 (absract).

    Google Scholar 

  42. Nolta JA, Hanley MB, Kohn DB . Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors. Blood 1994; 83: 3041–3051.

    CAS  PubMed  Google Scholar 

  43. Brouard N et al. Transplantation of stromal cells transduced with the human IL3 gene to stimulate hematopoiesis in human fetal bone grafts in non-obese, diabetic-severe combined immunodeficiency mice. Leukemia 1998; 12: 1128–1135.

    Article  CAS  PubMed  Google Scholar 

  44. Cherington V et al. Retroviral vector-modified bone marrow stromal cells secrete biologically active factor IX in vitro and transiently deliver therapeutic levels of human factor IX to the plasma of dogs after reinfusion. Hum Gene Ther 1998; 9: 1397–1407.

    Article  CAS  PubMed  Google Scholar 

  45. Bartholomew A et al. Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Hum Gene Ther 2001; 12: 1527–1541.

    Article  CAS  PubMed  Google Scholar 

  46. Markowitz D, Goff S, Bank A . A safe packaging line for gene transfer: separating viral genes on two different plasmids. J Virol 1988; 62: 1120–1124.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Galipeau J et al. Vesicular stomatitis virus G pseudotyped retrovector mediates effective in vivo suicide gene delivery in experimental brain cancer. Cancer Res 1999; 59: 2384–2394.

    CAS  PubMed  Google Scholar 

  48. Morgenstern JP, Land H . A series of mammalian expression vectors and characterisation of their expression of a reporter gene in stably and transiently transfected cells. Nucleic Acids Res 1990; 18: 1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Regulier E et al. Continuous delivery of human and mouse erythropoietin in mice by genetically engineered polymer encapsulated myoblasts. Gene Ther 1998; 5: 1014–1022.

    Article  CAS  PubMed  Google Scholar 

  50. Rinaudo D, Toniatti C . Sensitive ELISA for mouse erythropoietin. Biotechniques 2000; 29: 218–220.

    Article  CAS  PubMed  Google Scholar 

  51. Naffakh N et al. Long-term secretion of therapeutic proteins from genetically modified skeletal muscles. Hum Gene Ther 1996; 7: 11–21.

    Article  CAS  PubMed  Google Scholar 

  52. Lejnieks DV, Ramesh N, Lau S, Osborne WR . Stomach implant for long-term erythropoietin expression in rats. Blood 1998; 92: 888–893.

    CAS  PubMed  Google Scholar 

  53. Lin Y et al. Use of blood outgrowth endothelial cells for gene therapy for hemophilia A. Blood 2002; 99: 457–462.

    Article  CAS  PubMed  Google Scholar 

  54. Ramesh N et al. High-level human adenosine deaminase expression in dog skin fibroblasts is not sustained following transplantation. Hum Gene Ther 1993; 4: 3–7.

    Article  CAS  PubMed  Google Scholar 

  55. Palmer TD, Rosman GJ, Osborne WR, Miller AD . Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc Natl Acad Sci USA 1991; 88: 1330–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cristofalo VJ, Volker C, Francis MK, Tresini M . Age-dependent modifications of gene expression in human fibroblasts [review] [261 refs]. Crit Rev Eukaryotic Gene Expression 1998; 8: 43–80.

    Article  CAS  Google Scholar 

  57. Gussoni E et al. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 1992; 356: 435–438.

    Article  CAS  PubMed  Google Scholar 

  58. Mendell JR et al. Myoblast transfer in the treatment of Duchenne's muscular dystrophy [see comments]. New Engl J Med 1995; 333: 832–838.

    Article  CAS  PubMed  Google Scholar 

  59. Morgan JE . Cell and gene therapy in Duchenne muscular dystrophy [review]. [104 refs]. Hum Gene Ther 1994; 5: 165–173.

    Article  CAS  PubMed  Google Scholar 

  60. Osborne WR et al. Gene therapy for long-term expression of erythropoietin in rats. Proc Natl Acad Sci USA 1995; 92: 8055–8058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Clowes MM et al. Long-term biological response of injured rat carotid artery seeded with smooth muscle cells expressing retrovirally introduced human genes. J Clin Invest 1994; 93: 644–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lejnieks DV et al. Granulocyte colony-stimulating factor expression from transduced vascular smooth muscle cells provides sustained neutrophil increases in rats. Hum Gene Ther 1996; 7: 1431–1436.

    Article  CAS  PubMed  Google Scholar 

  63. Mitani K, Wakamiya M, Caskey CT . Long-term expression of retroviral-transduced adenosine deaminase in human primitive hematopoietic progenitors. Hum Gene Ther 1993; 4: 9–16.

    Article  CAS  PubMed  Google Scholar 

  64. Chertkov JL et al. The hematopoietic stromal microenvironment promotes retrovirus-mediated gene transfer into hematopoietic stem cells. Stem Cells 1993; 11: 218–227.

    Article  CAS  PubMed  Google Scholar 

  65. Quesenberry PJ et al. Engraftment of normal murine marrow into nonmyeloablated host mice. Blood Cells 1994; 20: 348–350.

    CAS  PubMed  Google Scholar 

  66. Culver K et al. Lymphocytes as cellular vehicles for gene therapy in mouse and man. Proc Natl Acad Sci USA 1991; 88: 3155–3159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Koc ON et al. Culture-expanded autologous human mesenchymal stem cells (MSCs) circulate in blood and retain proliferative capacity following iv infusion into breast cancer patients. Blood 1998; 92: 274 (abstract).

    Google Scholar 

  68. Lazarus HM et al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995; 16: 557–564.

    CAS  PubMed  Google Scholar 

  69. Keating A, Berkahn L, Filshie R . A phase I study of the transplantation of genetically marked autologous bone marrow stromal cells. Hum Gene Ther 1998; 9: 591–600.

    Article  CAS  PubMed  Google Scholar 

  70. Chuah MK et al. Long-term persistence of human bone marrow stromal cells transduced with factor VIII-retroviral vectors and transient production of therapeutic levels of human factor VIII in nonmyeloablated immunodeficient mice. Hum Gene Ther 2000; 11: 729–738.

    Article  CAS  PubMed  Google Scholar 

  71. Allay JA et al. LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors. Hum Gene Ther 1997; 8: 1417–1427.

    Article  CAS  PubMed  Google Scholar 

  72. Pereira RF et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA 1998; 95: 1142–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Koc ON, Lazarus HM . Mesenchymal stem cells: heading into the clinic [review]. Bone Marrow Transplant 2001; 27: 235–239.

    Article  CAS  PubMed  Google Scholar 

  74. Naffakh N et al. Sustained delivery of erythropoietin in mice by genetically modified skin fibroblasts. Proc Natl Acad Sci USA 1995; 92: 3194–3198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rosenzweig M et al. Induction of cytotoxic T lymphocyte and antibody responses to enhanced green fluorescent protein following transplantation of transduced CD34+ hematopoietic cells. Blood 2001; 97: 1951–1959.

    Article  CAS  PubMed  Google Scholar 

  76. Stripecke R et al. Immune response to green fluorescent protein: implications for gene therapy. Gene Ther 1999; 6: 1305–1312.

    Article  CAS  PubMed  Google Scholar 

  77. Stupack DG et al. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 2001; 155: 459–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jiang Y et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–49.

    Article  CAS  PubMed  Google Scholar 

  79. Ruschitzka FT et al. Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin. Proc Natl Acad Sci USA 2000; 97: 11609–11613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Eliopoulos N et al. Human cytidine deaminase as an ex vivo drug selectable marker in gene-modified primary bone marrow stromal cells. Gene Ther 2002; 9: 452–462.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Franca Pulice for expert technical support. N Eliopoulos is a fellow of the Leukemia Research Fund of Canada and J Galipeau is a recipient of the Medical Research Council of Canada Clinician-Scientist Award. This work is supported by the Bayer-Canadian Blood Services/Hema-Quebec Partnership Fund and the Canadian Stem Cell Network.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliopoulos, N., Al-Khaldi, A., Crosato, M. et al. A neovascularized organoid derived from retrovirally engineered bone marrow stroma leads to prolonged in vivo systemic delivery of erythropoietin in nonmyeloablated, immunocompetent mice. Gene Ther 10, 478–489 (2003). https://doi.org/10.1038/sj.gt.3301919

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301919

Keywords

This article is cited by

Search

Quick links