Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Human PBMC-derived dendritic cells transduced with an adenovirus vector induce cytotoxic T-lymphocyte responses against a vector-encoded antigen in vitro

Abstract

Dendritic cells (DC) are among the most potent antigen-presenting cells known and play an important role in the initiation of antigen-specific T-lymphocyte responses. Several recent studies have demonstrated that DC expressing vector-encoded tumour-associated antigens can induce protective and therapeutic immunity in murine cancer models. In the current study we set out to examine in vitro the utility of adenovirus vectors in the transduction of human DC for the induction of antigen-specific T-lymphocyte responses against a defined vector-encoded antigen. DC were derived from the adherent fraction of PBMC by culture in defined medium containing GM-CSF and IL-4. A replication-defective E1/E3-deleted type 5 adenovirus vec- tor encoding bacterial β-galactosidase (β-gal) under the transcriptional control of a CMV promoter was used to transduce DC at multiplicities of infection (MOI) up to 1000. While high MOI were required to achieve efficient transduction there was no significant effect on DC morphology, immunophenotype or potency in allogeneic lymphocyte proliferation assays. Furthermore, transduced DC-induced antigen-specific CTL activity against adenoviral proteins and more significantly, the vector-encoded antigen β-gal. These data clearly demonstrate the potential of adenovirus vectors in anticancer DC vaccine strategies and provide an important link between existing animal data and human clinical application.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Knuth A, Wolfel T, Meyer zBK . T cell responses to human malignant tumours Cancer Surv 1992 13: 39–52

    CAS  PubMed  Google Scholar 

  2. Schneider SC, Sercarz EE . Antigen processing differences among APC Hum Immunol 1997 54: 148–158

    Article  CAS  Google Scholar 

  3. Castellino F, Zhong G, Germain RN . Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking and the molecular basis of diverse determinant capture Hum Immunol 1997 54: 159–169

    Article  CAS  Google Scholar 

  4. Maffei A, Papadopoulos K, Harris PE . MHC class I antigen processing pathways Hum Immunol 1997 54: 91–103

    Article  CAS  Google Scholar 

  5. Rock KL . A new foreign policy: MHC class I molecules monitor the outside world Immunol Today 1996 17: 131–137

    Article  CAS  Google Scholar 

  6. Allison JP, Hurwitz AA, Leach DR . Manipulation of costimulatory signals to enhance antitumor T-cell responses Curr Opin Immunol 1995 7: 682–686

    Article  CAS  Google Scholar 

  7. Steinman RM . The dendritic cell system and its role in immunogenicity Annu Rev Immunol 1991 9: 271–296

    Article  CAS  Google Scholar 

  8. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  Google Scholar 

  9. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J . GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells Nature 1992 360: 258–261

    Article  CAS  Google Scholar 

  10. Reid CD, Stackpoole A, Meager A, Tikerpae J . Interactions of tumor necrosis factor with granulocyte–macrophage colony-stimulating factor and other cytokines in the regulation ofdendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow J Immunol 1992 149: 2681–2688

    CAS  PubMed  Google Scholar 

  11. Santiago-Schwarz F, Belilos E, Diamond B, Carsons SE . TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages J Leuk Biol 1992 52: 274–281

    Article  CAS  Google Scholar 

  12. Kiertscher SM, Roth MD . Human CD14+ leukocytes acquire the phenotype and function of antigen-presenting dendritic cells when cultured in GM-CSF and IL-4 J Leuk Biol 1996 59: 208–218

    Article  CAS  Google Scholar 

  13. Zhou LJ, Tedder TF . CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells Proc Natl Acad Sci USA 1996 93: 2588–2592

    Article  CAS  Google Scholar 

  14. Mayordomo JI et al. Bone marrow-derived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines Stem Cells 1997 15: 94–103

    Article  CAS  Google Scholar 

  15. Schuler G, Steinman RM . Dendritic cells as adjuvants for immune-mediated resistance to tumors J Exp Med 1997 186: 1183–1187

    Article  CAS  Google Scholar 

  16. Mayordomo JI et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity Nature Med 1995 1: 1297–1302

    Article  CAS  Google Scholar 

  17. Zitvogel L et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation and T helper cell 1-associated cytokines J Exp Med 1996 183: 87–97

    Article  CAS  Google Scholar 

  18. Nair SK, Snyder D, Rouse BT, Gilboa E . Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts Int J Cancer 1997 70: 706–715

    Article  CAS  Google Scholar 

  19. Song W et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity J Exp Med 1997 186: 1247–1256

    Article  CAS  Google Scholar 

  20. Specht JM et al. Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases J Exp Med 1997 186: 1213–1221

    Article  CAS  Google Scholar 

  21. Ashley DM et al. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors J Exp Med 1997 186: 1177–1182

    Article  CAS  Google Scholar 

  22. Wan Y et al. Dendritic cells transduced with an adenoviral vector encoding a model tumor-associated antigen for tumor vaccination Hum Gene Ther 1997 8: 1355–1363

    Article  CAS  Google Scholar 

  23. Ribas A et al. Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells Cancer Res 1997 57: 2865–2869

    CAS  PubMed  Google Scholar 

  24. Gong J et al. Induction of antigen-specific antitumor immunity with adenovirus-transduced dendritic cells Gene Therapy 1997 4: 1023–1028

    Article  CAS  Google Scholar 

  25. Hsu FJ et al. Vaccination of patients with B cell lymphoma using autologous antigen-pulsed dendritic cells Nature Med 1996 2: 52–58

    Article  CAS  Google Scholar 

  26. Nestle FO et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells Nature Med 1998 4: 328–332

    Article  CAS  Google Scholar 

  27. Boczkowski D, Nair SK, Snyder D, Gilboa E . Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo J Exp Med 1996 184: 465–472

    Article  CAS  Google Scholar 

  28. Arthur JF et al. A comparison of gene transfer methods in human dendritic cells Cancer Gene Ther 1997 4: 17–25

    CAS  PubMed  Google Scholar 

  29. Brossart P et al. Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL J Immunol 1997 158: 3270–3276

    CAS  PubMed  Google Scholar 

  30. Dietz AB, Vuk-Pavlovic S . High efficiency adenovirus-mediated gene transfer to human dendritic cells Blood 1998 91: 392–398

    CAS  PubMed  Google Scholar 

  31. Engelhardt JF, Ye X, Doranz B, Wilson JM . Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver Proc Natl Acad Sci USA 1994 91: 6196–6200

    Article  CAS  Google Scholar 

  32. Yang Y et al. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo Gene Therapy 1996 3: 137–144

    PubMed  Google Scholar 

  33. Yang Y, Ertl HC, Wilson JM . MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses Immunity 1994 1: 433–442

    Article  CAS  Google Scholar 

  34. Rich DP et al. Development and analysis of recombinant adenoviruses for gene therapy of cystic fibrosis Hum Gene Ther 1993 4: 461–476

    Article  CAS  Google Scholar 

  35. Grunhaus A, Horwitz MS . Adenoviruses as cloning vectors Semin Virol 1992 3: 237–252

    CAS  Google Scholar 

  36. Young JW, Inaba K . Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity (comment) J Exp Med 1996 183: 7–11

    Article  CAS  Google Scholar 

  37. Juillard V et al. Long-term humoral and cellular immunity induced by a single immunization with replication-defective adenovirus recombinant vector Eur J Immunol 1995 25: 3467–3473

    Article  CAS  Google Scholar 

  38. Wickham TJ et al. Targeted adenovirus-mediated gene delivery to T cells via CD3 J Virol 1997 71: 7663–7669

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang S, Endo RI, Nemerow GR . Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery J Virol 1995 69: 2257–2263

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bergelson JM et al. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses J Virol 1998 72: 415–419

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rogers BE et al. Use of a novel cross-linking method to modify adenovirus tropism Gene Therapy 1997 4: 1387–1392

    Article  CAS  Google Scholar 

  42. Hardy S et al. Construction of adenovirus vectors through Cre-lox recombination J Virol 1997 71: 1842–1849

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Acsadi G et al. A differential efficiency of adenovirus-mediated in vivo gene transfer into skeletal muscle cells of different maturity Hum Molec Genet 1994 3: 579–584

    Article  CAS  Google Scholar 

  44. Graham FL, Smiley J, Russell WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5 J Gen Virol 1977 36: 59–74

    Article  CAS  Google Scholar 

  45. Graham FL, Prevec L . Manipulation of adenovirus vectors. In: Murray EJ (ed) . Gene Transfer and Expression Protocols Humana Press: Clifton, NJ 1991 109–128

    Google Scholar 

  46. Miller DG, Edwards RH, Miller AD . Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus Proc Natl Acad Sci USA 1994 91: 78–82

    Article  CAS  Google Scholar 

  47. Muzyczka N . Use of adeno-associated virus as a general transduction vector for mammalian cells Curr Top Microbiol Immunol 1992 158: 97–129

    CAS  PubMed  Google Scholar 

  48. Miller AD, Buttimore C . Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production Mol Cell Biol 1986 6: 2895–2902

    Article  CAS  Google Scholar 

  49. Miller AD, Miller DG, Garcia JV, Lynch CM . Use of retroviral vectors for gene transfer and expression Meth Enzymol 1993 217: 581–599

    Article  CAS  Google Scholar 

  50. Halbert CL, Alexander IE, Wolgamot GM, Miller AD . Adeno-associated virus vectors transduce primary cells much less efficiently than immortalized cells J Virol 1995 69: 1473–1479

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schevzov G et al. Tropomyosin localisation reveals distinct populations of microfilaments in neurites and growth cones Mol Cell Neurosci 1997 8: 439–454

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diao, J., Smythe, J., Smyth, C. et al. Human PBMC-derived dendritic cells transduced with an adenovirus vector induce cytotoxic T-lymphocyte responses against a vector-encoded antigen in vitro. Gene Ther 6, 845–853 (1999). https://doi.org/10.1038/sj.gt.3300899

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300899

Keywords

This article is cited by

Search

Quick links