Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Autoimmune regulator: from loss of function to autoimmunity

Abstract

The autoimmune regulator (AIRE) is a gene where mutations cause the recessively inherited disorder called autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) or autoimmune polyendocrinopathy syndrome type 1 (APS1). Variable combinations of autoimmune endocrine diseases such as Addison's disease, hypoparathyroidism, and type 1 diabetes characterize APECED. The AIRE protein has several domains indicative of a transcriptional regulator. AIRE contains two PHD (plant homeodomain) type zinc fingers, four nuclear receptor binding LXXLL motifs, a putative DNA-binding domain named SAND and, in addition, a highly conserved N-terminal domain similar to the homogenously staining region domain of the Sp100 protein. At the subcellular level, AIRE is expressed in nuclear dots resembling promyelocytic leukemia nuclear bodies, which are associated with several transcriptionally active proteins. AIRE is primarily expressed in thymic medullary epithelial cells and monocyte-dendritic cells in the thymus but also in a rare subset of cells in the lymph nodes, spleen and fetal liver. The disease, caused by mutations in AIRE, its function as a protein involved in transcription, and its restricted expression in cells important in negative selection, all together suggest that AIRE is a central protein in the maintenance of immune tolerance. In this review of the recent literature we discuss the results of these studies with particular attention on the AIRE expression pattern and its function as a transcriptional regulator, as well as the effects of patient mutations on the molecular characteristics of the protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Neufeld M, Maclaren N, Blizzard R . Autoimmune polyglandular syndromes. Pediatr Ann 1980; 9: 154–162.

    CAS  PubMed  Google Scholar 

  2. Perheentupa J . Autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED). Horm Metab Res 1996; 28: 353–356.

    CAS  PubMed  Google Scholar 

  3. Ahonen P, Myllarniemi S, Sipila I, Perheentupa J . Clinical variation of autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 1990; 322: 1829–1836.

    CAS  PubMed  Google Scholar 

  4. Krohn K, Uibo R, Aavik E, Peterson P, Savilahti K . Identification by molecular cloning of an autoantigen associated with Addison's disease as steroid 17 alpha-hydroxylase. Lancet 1992; 339: 770–773.

    CAS  PubMed  Google Scholar 

  5. Uibo R, Aavik E, Peterson P et al. Autoantibodies to cytochrome P450 enzymes P450scc, P450c17, and P450c21 in autoimmune polyglandular disease types I and II and in isolated Addison's disease. J Clin Endocrinol Metab 1994; 78: 323–328.

    CAS  PubMed  Google Scholar 

  6. Winqvist O, Karlsson FA, Kampe O . 21-Hydroxylase, a major autoantigen in idiopathic Addison's disease. Lancet 1992; 339: 1559–1562.

    CAS  PubMed  Google Scholar 

  7. Winqvist O, Gustafsson J, Rorsman F, Karlsson FA, Kampe O . Two different cytochrome P450 enzymes are the adrenal antigens in autoimmune polyendocrine syndrome type I and Addison's disease. J Clin Invest 1993; 92: 2377–2385.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Betterle C, Dal Pra C, Mantero F, Zanchetta R . Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr Rev 2002; 23: 327–364.

    CAS  PubMed  Google Scholar 

  9. Zlotogora J, Shapiro MS . Polyglandular autoimmune syndrome type I among Iranian Jews. J Med Genet 1992; 29: 824–826.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosatelli MC, Meloni A, Devoto M et al. A common mutation in Sardinian autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy patients. Hum Genet 1998; 103: 428–434.

    CAS  PubMed  Google Scholar 

  11. The Finnish-German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. Nat Genet 1997; 17: 399–403.

    Google Scholar 

  12. Nagamine K, Peterson P, Scott HS et al. Positional cloning of the APECED gene. Nat Genet 1997; 17: 393–398.

    CAS  PubMed  Google Scholar 

  13. Mittaz L, Rossier C, Heino M et al. Isolation and characterization of the mouse Aire gene. Biochem Biophys Res Commun 1999; 255: 483–490.

    CAS  PubMed  Google Scholar 

  14. Sternsdorf T, Grotzinger T, Jensen K, Will H . Nuclear dots: actors on many stages. Immunobiology 1997; 198: 307–331.

    CAS  PubMed  Google Scholar 

  15. Sternsdorf T, Jensen K, Reich B, Will H . The nuclear dot protein sp100, characterization of domains necessary for dimerization, subcellular localization and modification by small ubiquitin-like modifiers. J Biol Chem 1999; 274: 12 555–12 566.

    Google Scholar 

  16. Guldner HH, Szostecki C, Schroder P et al. Splice variants of the nuclear dot-associated Sp100 protein contain homologies to HMG-1 and a human nuclear phosphoprotein-box motif. J Cell Sci 1999; 112: 733–747.

    CAS  PubMed  Google Scholar 

  17. Zuklys S, Balciunaite G, Agarwal A et al. Normal thymic architecture and negative selection are associated with Aire expression, the gene defective in the autoimmune-polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED). J Immunol 2000; 165: 1976–1983.

    CAS  PubMed  Google Scholar 

  18. Heino M, Peterson P, Kudoh J et al. Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla. Biochem Biophys Res Commun 1999; 257: 821–825.

    CAS  PubMed  Google Scholar 

  19. Heino M, Peterson P, Sillanpää N et al. RNA and protein expression of the murine autoimmune regulator gene (Aire) in normal, RelB-deficient and in NOD mouse. Eur J Immunol 2000; 30: 1884–1893.

    CAS  PubMed  Google Scholar 

  20. Kogawa K, Nagafuchi S, Katsuta H et al. Expression of AIRE gene in peripheral monocyte/dendritic cell lineage. Immunol Lett 2002; 80: 195–198.

    CAS  PubMed  Google Scholar 

  21. Halonen M, Pelto-Huikko M, Eskelin P et al. Subcellular location and expression pattern of autoimmune regulator (Aire), the mouse orthologue for human gene defective in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED). J Histochem Cytochem 2001; 49: 197–208.

    CAS  PubMed  Google Scholar 

  22. Blechschmidt K, Schweiger M, Wertz K et al. The mouse Aire gene: comparative genomic sequencing, gene organization, and expression. Genome Res 1999; 9: 158–166.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Backstrom BT, Muller U, Hausmann B, Palmer E . Positive selection through a motif in the alphabeta T cell receptor. Science 1998; 281: 835–838.

    CAS  PubMed  Google Scholar 

  24. Wang B, Levelt C, Salio M et al. Over-expression of CD3 epsilon transgenes blocks T lymphocyte development. Int Immunol 1995; 7: 435–448.

    CAS  PubMed  Google Scholar 

  25. Nabarra B, Andrianarison I . Thymus reticulum of autoimmune mice 3. Ultrastructural study of NOD (non-obese diabetic) mouse thymus. Int J Exp Pathol 1991; 72: 275–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Atlan-Gepner C, Naspetti M, Valero R et al. Disorganization of thymic medulla precedes evolution towards diabetes in female NOD mice. Autoimmunity 1999; 31: 249–260.

    CAS  PubMed  Google Scholar 

  27. Wang CY, Davoodi-Semiromi A, Huang W et al. Characterization of mutations in patients with autoimmune polyglandular syndrome type 1 (APS1). Hum Genet 1998; 103: 681–685.

    CAS  PubMed  Google Scholar 

  28. Pearce SH, Cheetham T, Imrie H et al. A common and recurrent 13-bp deletion in the autoimmune regulator gene in British kindreds with autoimmune polyendocrinopathy type 1. Am J Hum Genet 1998; 63: 1675–1684.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Scott HS, Heino M, Peterson P et al. Common mutations in autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy patients of different origins. Mol Endocrinol 1998; 12: 1112–1119.

    CAS  PubMed  Google Scholar 

  30. Myhre AG, Björses P, Dalen A, Husebye ES . Three sisters with Addison's disease. J Clin Endocrinol Metab 1998; 83: 4204–4206.

    CAS  PubMed  Google Scholar 

  31. Ward L, Paquette J, Seidman, E et al. Severe autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy in an adolescent girl with a novel AIRE mutation: response to immunosuppressive therapy. J Clin Endocrinol Metab 1999; 84: 844–852.

    CAS  PubMed  Google Scholar 

  32. Heino M, Scott HS, Chen Q et al. Mutation analyses of North American APS-1 patients. Hum Mutat 1999; 13: 69–74.

    CAS  PubMed  Google Scholar 

  33. Björses P, Halonen M, Palvimo JJ et al. Mutations in the AIRE gene: effects on subcellular location and transactivation function of the autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy protein. Am J Hum Genet 2000; 66: 378–392.

    PubMed  PubMed Central  Google Scholar 

  34. Ishii T, Suzuki Y, Ando N, Matsuo N, Ogata T . Novel mutations of the autoimmune regulator gene in two siblings with autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. J Clin Endocrinol Metab 2000; 85: 2922–2926.

    CAS  PubMed  Google Scholar 

  35. Cihakova D, Trebusak K, Heino M et al. Novel AIRE mutations and P450 cytochrome autoantibodies in Central and Eastern European patients with APECED. Hum Mutat 2001; 18: 225–232.

    CAS  PubMed  Google Scholar 

  36. Myhre AG, Halonen M, Eskelin P et al. Autoimmune polyendocrine syndrome type 1 (APS I) in Norway. Clin Endocrinol (Oxf) 2001; 54: 211–217.

    CAS  Google Scholar 

  37. Saugier-Veber P, Drouot N, Wolf LM et al. Identification of a novel mutation in the autoimmune regulator (AIRE-1) gene in a French family with autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. Eur J Endocrinol 2001; 144: 347–351.

    CAS  PubMed  Google Scholar 

  38. Soderbergh A, Rorsman F, Halonen M et al. Autoantibodies against aromatic L-amino acid decarboxylase identifies a subgroup of patients with Addison's disease. J Clin Endocrinol Metab 2000; 85: 460–463.

    CAS  PubMed  Google Scholar 

  39. Cetani F, Barbesino G, Borsari S et al. A novel mutation of the autoimmune regulator gene in an Italian kindred with autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy, acting in a dominant fashion and strongly cosegregating with hypothyroid autoimmune thyroiditis. J Clin Endocrinol Metab 2001; 86: 4747–4752.

    CAS  PubMed  Google Scholar 

  40. Heino M, Peterson P, Kudoh, J et al. APECED mutations in the autoimmune regulator (AIRE) gene. Hum Mutat 2001; 18: 205–211.

    CAS  PubMed  Google Scholar 

  41. Meloni A, Perniola R, Faa V et al. Delineation of the molecular defects in the AIRE gene in autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy patients from Southern Italy. J Clin Endocrinol Metab 2002; 87: 841–846.

    CAS  PubMed  Google Scholar 

  42. Halonen M, Eskelin P, Myhre AG et al. AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy phenotype. J Clin Endocrinol Metab 2002; 87: 2568–2574.

    CAS  PubMed  Google Scholar 

  43. Gylling M, Tuomi T, Bjorses P et al. ss-cell autoantibodies, human leukocyte antigen II alleles, and type 1 diabetes in autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. J Clin Endocrinol Metab 2000; 85: 4434–4440.

    CAS  PubMed  Google Scholar 

  44. Meyer G, Donner H, Herwig J et al. Screening for an AIRE-1 mutation in patients with Addison's disease type 1 diabetes Graves' disease and Hashimoto's thyroiditis as well as in APECED syndrome. Clin Endocrinol (Oxf) 2001; 54: 335–338.

    CAS  Google Scholar 

  45. Nithiyananthan R, Heward JM, Allahabadia A et al. A heterozygous deletion of the autoimmune regulator (AIRE1) gene autoimmune thyroid disease, and type 1 diabetes: no evidence for association. J Clin Endocrinol Metab 2000; 85: 1320–1322.

    CAS  PubMed  Google Scholar 

  46. Vaidya B, Imrie H, Geatch DR et al. Association analysis of the cytotoxic T lymphocyte antigen-4 (CTLA-4) and autoimmune regulator-1 (AIRE-1) genes in sporadic autoimmune Addison's disease. J Clin Endocrinol Metab 2000; 85: 688–691.

    CAS  PubMed  Google Scholar 

  47. Pitkänen J, Vähämurto P, Krohn K, Peterson P . Subcellular localization of the autoimmune regulator protein: characterization of nuclear targeting and transcriptional activation domain. J Biol Chem 2001; 276: 19 597–19 602.

    Google Scholar 

  48. Björses P, Pelto-Huikko M, Kaukonen J et al. Localization of the APECED protein in distinct nuclear structures. Hum Mol Genet 1999; 8: 259–266.

    PubMed  Google Scholar 

  49. Rinderle C, Christensen HM, Schweiger S, Lehrach H, Yaspo ML . AIRE encodes a nuclear protein co-localizing with cytoskeletal filaments: altered sub-cellular distribution of mutants lacking the PHD zinc fingers. Hum Mol Genet 1999; 8: 277–290.

    CAS  PubMed  Google Scholar 

  50. Doucas V, Evans RM . The PML nuclear compartment and cancer. Biochim Biophys Acta 1996; 1288: M25–M29.

    Google Scholar 

  51. Nishi K, Yoshida M, Fujiwara D et al. Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J Biol Chem 1994; 269: 6320–6324.

    CAS  PubMed  Google Scholar 

  52. Fukuda M, Asano S, Nakamura T et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 1997; 390: 308–311.

    CAS  PubMed  Google Scholar 

  53. Kudo N, Matsumori N, Taoka H et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA 1999; 96: 9112–9117.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nakielny S, Dreyfuss G . Nuclear export of proteins and RNAs. Curr Opin Cell Biol 1997; 9: 420–429.

    CAS  PubMed  Google Scholar 

  55. Komeili A, O'Shea EK . Nuclear transport and transcription. Curr Opin Cell Biol 2000; 12: 355–360.

    CAS  PubMed  Google Scholar 

  56. Rodriguez JA, Henderson BR . Identification of a functional nuclear export sequence in BRCA1. J Biol Chem 2000; 275: 38 589–38 596.

    Google Scholar 

  57. Baumann CT, Maruvada P, Hager GL, Yen PM . Nuclear cytoplasmic shuttling by thyroid hormone receptors: multiple protein interactions are required for nuclear retention. J Biol Chem 2001; 276: 11 237–11 245.

    Google Scholar 

  58. Taagepera S, McDonald D, Loeb JE et al. Nuclear–cytoplasmic shuttling of C-ABL tyrosine kinase. Proc Natl Acad Sci USA 1998; 95: 7457–7462.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Stommel JM, Marchenko ND, Jimenez GS et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 1999; 18: 1660–1672.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim SS, Chen YM, O'Leary E et al. A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins. Proc Natl Acad Sci USA 1996; 93: 15 299–15 304.

    Google Scholar 

  61. Ge Q, Nilasena DS, O'Brien CA, Frank MB, Targoff IN . Molecular analysis of a major antigenic region of the 240-kD protein of Mi-2 autoantigen. J Clin Invest 1995; 96: 1730–1737.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gibbons RJ, Bachoo S, Picketts DJ et al. Mutations in transcriptional regulator ATRX establish the functional significance of a PHD-like domain. Nat Genet 1997; 17: 146–148.

    CAS  PubMed  Google Scholar 

  63. Thenot S, Bonnet S, Boulahtouf A et al. Effect of ligand and DNA binding on the interaction between human transcription intermediary factor 1alpha and estrogen receptors. Mol Endocrinol 1999; 13: 2137–2150.

    CAS  PubMed  Google Scholar 

  64. Yano T, Nakamura T, Blechman J et al. Nuclear punctate distribution of ALL-1 is conferred by distinct elements at the N terminus of the protein. Proc Natl Acad Sci USA 1997; 94: 7286–7291.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gibson TJ, Ramu C, Gemund C, Aasland R . The APECED polyglandular autoimmune syndrome protein, AIRE-1, contains the SAND domain and is probably a transcription factor. Trends Biochem Sci 1998; 23: 242–244.

    CAS  PubMed  Google Scholar 

  66. Pitkanen J, Doucas V, Sternsdorf T et al. The autoimmune regulator protein has transcriptional transactivating properties and interacts with the common coactivator CREB-binding protein. J Biol Chem 2000; 275: 16 802–16 809.

    Google Scholar 

  67. Lamond AI, Earnshaw WC . Structure and function in the nucleus. Science 1998; 280: 547–553.

    CAS  PubMed  Google Scholar 

  68. Janknecht R, Hunter T . Versatile molecular glue. Transcriptional control. Curr Biol 1996; 6: 951–954.

    CAS  PubMed  Google Scholar 

  69. Kamei Y, Xu L, Heinzel T et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 1996; 85: 403–414.

    CAS  PubMed  Google Scholar 

  70. Goldman PS, Tran VK, Goodman RH . The multifunctional role of the co-activator CBP in transcriptional regulation. Recent Prog Horm Res 1997; 52: 103–119.

    CAS  PubMed  Google Scholar 

  71. Chakravarti D, LaMorte VJ, Nelson MC et al. Role of CBP/P300 in nuclear receptor signalling. Nature 1996; 383: 99–103.

    CAS  PubMed  Google Scholar 

  72. Heery DM, Kalkhoven E, Hoare S, Parker MG . A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997; 387: 733–736.

    CAS  PubMed  Google Scholar 

  73. Bhattacharya S, Eckner R, Grossman S et al. Cooperation of Stat2 and p300/CBP in signalling induced by interferon- alpha. Nature 1996; 383: 344–347.

    CAS  PubMed  Google Scholar 

  74. Arany Z, Huang LE, Eckner R et al. An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA 1996; 93: 12 969–12 973.

    Google Scholar 

  75. Lundblad JR, Kwok RP, Laurance ME, Harter ML, Goodman RH . Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 1995; 374: 85–88.

    CAS  PubMed  Google Scholar 

  76. Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y . A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 1996; 382: 319–324.

    CAS  PubMed  Google Scholar 

  77. Chen H, Lin RJ, Schiltz RL et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 1997; 90: 569–580.

    CAS  PubMed  Google Scholar 

  78. Voegel JJ, Heine MJ, Tini M et al. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. Embo J 1998; 17: 507–519.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y . The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996; 87: 953–959.

    CAS  PubMed  Google Scholar 

  80. Bannister AJ, Kouzarides T . The CBP co-activator is a histone acetyltransferase. Nature 1996; 384: 641–643.

    CAS  PubMed  Google Scholar 

  81. Doucas V, Tini M, Egan DA, Evans RM . Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc Natl Acad Sci USA 1999; 96: 2627–2632.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Chan HM, La Thangue NB . p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 2001; 114: 2363–2373.

    CAS  PubMed  Google Scholar 

  83. Huggenvik JI, Michelson RJ, Collard MW et al. Characterization of a nuclear deformed epidermal autoregulatory factor-1 (DEAF-1)-related (NUDR) transcriptional regulator protein. Mol Endocrinol 1998; 12: 1619–1639.

    CAS  PubMed  Google Scholar 

  84. Bottomley MJ, Collard MW, Huggenvik JI et al. The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat Struct Biol 2001; 8: 626–633.

    CAS  PubMed  Google Scholar 

  85. Kumar PG, Laloraya M, Wang CY et al. The autoimmune regulator (AIRE) is a DNA-binding protein. J Biol Chem 2001; 276: 41 357–41 364.

    Google Scholar 

  86. Derbinski J, Schulte A, Kyewski B, Klein L . Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001; 2: 1032–1039.

    CAS  PubMed  Google Scholar 

  87. Kyewski B, Derbinski J, Gotter J, Klein L . Promiscuous gene expression and central T-cell tolerance: more than meets the eye. Trends Immunol 2002; 23: 364–371.

    CAS  PubMed  Google Scholar 

  88. Pietropaolo M, Giannoukakis N, Trucco M . Cellular environment and freedom of gene expression. Nat Immunol 2002; 3: 335; discussion 336.

    CAS  PubMed  Google Scholar 

  89. Pugliese A, Diez J . Lymphoid organs contain diverse cells expressing self-molecules. Nat Immunol 2002; 3: 335–336; discussion 336.

    CAS  PubMed  Google Scholar 

  90. Kishimoto H, Sprent J . The thymus and negative selection. Immunol Res 2000; 21: 315–323.

    CAS  PubMed  Google Scholar 

  91. Page DM . Cutting edge: thymic selection and autoreactivity are regulated by multiple coreceptors involved in T cell activation. J Immunol 1999; 163: 3577–3581.

    CAS  PubMed  Google Scholar 

  92. Grewal IS, Flavell RA . CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 1998; 16: 111–135.

    CAS  PubMed  Google Scholar 

  93. Amakawa R, Hakem A, Kundig TM et al. Impaired negative selection of T cells in Hodgkin's disease antigen CD30-deficient mice. Cell 1996; 84: 551–562.

    CAS  PubMed  Google Scholar 

  94. Romagnani P, Annunziato F, Manetti R et al. High CD30 ligand expression by epithelial cells and Hassal's corpuscles in the medulla of human thymus. Blood 1998; 91: 3323–3332.

    CAS  PubMed  Google Scholar 

  95. Annunziato F, Romagnani P, Cosmi L, Lazzeri E, Romagnani S . Chemokines and lymphopoiesis in human thymus. Trends Immunol 2001; 22: 277–281.

    CAS  PubMed  Google Scholar 

  96. Sakaguchi S . Policing the regulators. Nat Immunol 2001; 2: 283–284.

    CAS  PubMed  Google Scholar 

  97. Ramsey C, Winqvist O, Puhakka L et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet 2002; 11: 397–409.

    CAS  PubMed  Google Scholar 

  98. Kyewski B, Derbinski J, Gotter J, Klein L . Promiscuous gene expression and central T-cell tolerance: more than meets the eye. Trends Immunol 2002; 23: 364–371.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J. Pitkänen is supported by grants from the Tampere University Hospital Medical Research Fund, the Emil Aaltonen Foundation, the Finnish Medical Foundation and the Pirkanmaa Regional Fund of the Finnish Cultural Foundation. P. Peterson is supported by grants from the Tampere University Hospital Medical Research Fund, the Finnish Academy and the Sigrid Juselius Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Peterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitkänen, J., Peterson, P. Autoimmune regulator: from loss of function to autoimmunity. Genes Immun 4, 12–21 (2003). https://doi.org/10.1038/sj.gene.6363929

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363929

This article is cited by

Search

Quick links