Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Holotranscobalamin and methylmalonic acid as prognostic markers following an acute myocardial infarction

Abstract

Objective:

To evaluate whether low levels of holotranscobalamin (holoTC) or elevated levels of methylmalonic acid (MMA), both indicators of vitamin B12 deficiency, might predispose to new cardiovascular events following an acute myocardial infarction (MI).

Design:

A prospective prognostic study.

Setting:

One hospital center in Stavanger, Norway.

Subjects:

A total of 300 patients admitted with an acute MI.

Methods:

Registration of new TnT positive coronary events (defined as TnT>0.05 μg/l and a typical MI pattern) and/or cardiac death during a median follow-up time of 45 months.

Results:

We compared the recurrence of events in the lowest quartile of holoTC (Q1<73.9 pmol/l) to the event rate above the 25% percentile (Q2–4). For methylmalonic acid (MMA) the same comparison was carried out for the upper quartile (Q40.24 μmol/l) as compared with the event rate below the 75% percentile (Q1–3). After 18 and 45 months of follow-up, the odds ratio (OR) for Q1 vs Q2–4 for holoTC was 1.15 (95% confidence interval (CI) 0.91–1.46, P=0.25) and 1.05 (95% CI 0.86–1.29, P=0.64), respectively. For MMA the OR for Q4 vs Q1–3 was 0.95 (95% CI 0.76–1.19, P=0.67) after 18 months and 1.01 (95% CI 0.83–1.23, P=0.90) after 45 months.

Conclusion:

This study showed no increased risk of future cardiovascular events associated with low levels of holoTC or high levels of MMA following an acute MI.

Sponsorship:

Governmental grants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Alpert JS, Thygesen K (2000). The Joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of Myocardial Infarction. Eur Heart J 21, 1502–1513.

    Article  Google Scholar 

  • Bleie Ø, Refsum H, Ueland PM, Vollset SE, Guttormsen AB, Nexo E et al. (2004). Changes in basal and postmethionine load concentrations of total homocysteine and cystathionine after B-vitamin intervention. Am J Clin Nutr 80, 641–648.

    Article  CAS  PubMed  Google Scholar 

  • Bønaa KH, Njølstad I, Ueland PM, Schirmer H, Tverdal Aa, Steigen T et al., for the NORVIT trial investigators (2006). Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med 354, 1578–1588.

    Article  PubMed  Google Scholar 

  • Bor MV, Nex E, Hvas AM (2004). Holo-transcobalamin concentration and transcobalamin saturation reflect recent vitamin B12 absorption better than does serum vitamin B12. Clin Chem 50, 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  • Boushey CJ, Beresford SAA, Omenn GS, Motulsky AG (1995). A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: probable benefits of increasing folic acid intakes. JAMA 274, 1049–1057.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Remacha AF, Pilar Sardà M, Carmel R (2005). Influence of cobalamin deficiency compared with that of cobalamin absorption on serum holo-transcobalamin II. Am J Clin Nutr 81, 110–114.

    Article  CAS  PubMed  Google Scholar 

  • Clarke R, Frost C, Leroy V, Collins R, for The Homocysteine Lowering Trialists' Collaboration (1998). Lowering blood homocysteine with folic acid based supplements. Meta-analysis of randomised trials. BMJ 316, 894–898.

    Article  Google Scholar 

  • Folsom AR, Nieto FJ, McGovern PG, Tsai MY, Malinow MR, Eckfeldt JH et al. (1998). Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms and B vitamins. The Atherosclerosis Risk in Communities (ARIC) study. Circulation 98, 204–210.

    Article  CAS  PubMed  Google Scholar 

  • Franke S, Müller A, Sommer M, Bush M, Kientsch-Engel R, Stein G (2003). Serum level of total homocysteine, homocysteine metabolites and of advanced glycation end-products (AGEs) in patients after renal transplantation. Clin Nephrol 59, 88–97.

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt W, Waldenstrom J, Hörder M, Hofvendahl S, Billström R, Ljungdahl R et al. (1982). Creatine kinase and creatine kinase B-subunit activity in serum in cases of suspected myocardial infarction. Clin Chem 28, 277–283.

    CAS  PubMed  Google Scholar 

  • Graham IM, O'Challaghan P (2002). Symposium: vitamin therapy and ischemic heart disease. Cardiovasc Drugs Ther 16, 383–389.

    Article  CAS  PubMed  Google Scholar 

  • Grundt H, Nilsen DWT, Mansoor MA, Hetland Ø, Nordøy A (2003). Reduction in homocysteine by n-3 polyunsaturated fatty acids after 1 year in a randomized double-blind study following an acute myocardial infarction: no effect on endothelial adhesion properties. Pathophysiol Haemost Thromb 33, 88–95.

    Article  CAS  PubMed  Google Scholar 

  • Hankey GJ, Eikelboom JW (1999). Homocysteine and vascular disease. Lancet 354, 407–413.

    Article  CAS  PubMed  Google Scholar 

  • Herrmann W, Obeid R, Schorr H, Geisel J (2003). Functional vitamin B12 deficiency and determination of holotranscobalamin in population at risk. Clin Chem Lab Med 41, 1478–1488.

    CAS  PubMed  Google Scholar 

  • Herrmann W, Obeid R, Schorr H, Geisel J (2005). The usefulness of holotranscobalamin in prediciting vitamin B12 status in different clinical settings. Curr Drug Metab 6, 47–53.

    Article  CAS  PubMed  Google Scholar 

  • Herrmann W, Schorr H, Bodis M, Knapp JP, Müller A, Stein G et al. (2000). Role of homocysteine, cystathionine and methylmalonic acid measurements for diagnosis of vitamin deficiency in high-aged subjects. Eur J Clin Invest 30, 1083–1089.

    Article  CAS  PubMed  Google Scholar 

  • Hetland Ø, Gøransson L, Nilsen DWT (1995). Cardiac troponin-T immunoassay on biotin-streptavidin-coated microplates, preliminary performance in acute myocardial infarction. Scand J Clin Lab Invest 55, 701–713.

    Article  CAS  PubMed  Google Scholar 

  • Hvas A-M, Nexo E (2005). Holotranscobalamin – a first choice assay for diagnosing early vitamin B12 deficiency? J Intern Med 257, 289–298.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd-Wright Z, Hvas A-M, Møller J, Sanders TAB, Nexø E (2003). Holotranscobalamin as an indicator of dietary vitamin B12 deficiency. Clin Chem 49, 2076–2078.

    Article  CAS  PubMed  Google Scholar 

  • Miller JW, Garrod MG, Rockwood AL, Kushnir MM, Allen LH, Haan MN et al. (2006). Measurement of total vitamin B12 and holotranscobalamin, singly and in combination, in screening for metabolic vitamin B12 deficiency. Clin Chem 52, 278–285.

    Article  CAS  PubMed  Google Scholar 

  • Moleerergpoom W, Sura T, Sritara P (2004). Association between serum homocysteine, folate and B12 concentration with coronary artery disease in Thai patients. J Med Assoc Thai 87, 674–678.

    PubMed  Google Scholar 

  • Naurath HJ, Joosten E, Riezler R, Stabler SP, Allen RH, Lindenbaum J (1995). Effects of vitamin B12, folate, and vitamin B6 supplements in elderly people with normal serum vitamin concentrations. Lancet 346, 85–89.

    Article  CAS  PubMed  Google Scholar 

  • Nexo E, Christensen A-L, Petersen TE, Fedosov SN (2000). Measurement of transcobalamin by ELISA. Clin Chem 46, 1643–1649.

    CAS  PubMed  Google Scholar 

  • Nexo E, Hvas A-M, Bleie Ø, Refsum H, Fedosov SN, Vollset SE et al. (2002). Holo-transcobalamin is an early marker of changes in cobalamin homeostasis. A randomized placebo-controlled study. Clin Chem 48, 1768–1771.

    CAS  PubMed  Google Scholar 

  • Nilsen DWT, Albrektsen G, Landmark K, Moen S, Aarsland T, Woie L (2001). Effects of a high-dose concentrate of n-3 fatty acids or corn oil introduced early after an acute myocardial infarction on serum triacylglycerol and HDL cholesterol. Am J Clin Nutr 74, 50–56.

    Article  CAS  PubMed  Google Scholar 

  • Refsum H, Johnston C, Guttormsen AB, Nexo E (2006). Holotranscobalamin and total transcobalamin in human plasma: determination, determinants and reference values in healthy adults. Clin Chem 52, 129–137.

    Article  CAS  PubMed  Google Scholar 

  • Rifai N, Hagen T, Bradley L, Sakamoto M (1998). Determination of serum physiological concentration of methylmalonic acid by gas chromatography-mass spectrometry with selected ion monitoring. Ann Clin Biochem 35, 633–636.

    Article  CAS  PubMed  Google Scholar 

  • Robinson K, Arheart K, Refsum H, Brattström L, Boers G, Ueland P, et al., for the European COMAC Group (1998). Low circulating folate and vitamin B6 concentrations. Risk factors for stroke, peripheral vascular disease, and coronary artery disease. Circulation 97, 437–443.

    Article  CAS  PubMed  Google Scholar 

  • Sundrehagen E (2002) United States Patent6, 417, 006.

  • Verhaar MC, Stroes E, Rabelink TJ (2002). Folates and cardiovascular disease. Brief reviews. Arterioscler Thromb Vasc Biol 22, 6–13.

    Article  CAS  PubMed  Google Scholar 

  • Verhoef P, Stampfer MJ, Buring JE, Gaziano JM, Allen RH, Stabler SP et al. (1996). Homocysteine metabolism and risk of myocardial infarction; relation with vitamins B6, B12 and folate. Am J Epidemiol 143, 845–859.

    Article  CAS  PubMed  Google Scholar 

  • Voutilainen S, Rissanen TH, Virtanen J, Lakka TA, Salonen JT (2001). Low dietary folate intake is associated with an exess incidence of acute coronary events. The Kuopio Ischemic Heart Disease Risk Factor Study. Circulation 103, 2674–2680.

    Article  CAS  PubMed  Google Scholar 

  • Wald DS, Law M, Morris JK (2002). Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325, 1202–1207.

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organisation (1976). Myocardial infarction community registers. Title: Coopenhagen: World Health Organisation.

Download references

Acknowledgements

We thank project nurse, Solfrid Moen, Hjertelaget Research Foundation, Stavanger, Norway, and the steering committee of the ‘OFAMI’-study: Dennis WT Nilsen, Knud Landmark, Leik Woie and Michael Abdelnoor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Aarsetøy.

Additional information

Guarantor: H Aarsetøy.

Contributors: The study was designed and conducted by HAa, HG and DWTN. HG performed the statistical analyses. HAa was the main author interpreting the data with expert advice from HG and DWTN. EV, AR and MAM were responsible for the laboratory measurements. All authors contributed to critical revision of the final version of the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarsetøy, H., Valente, E., Reine, A. et al. Holotranscobalamin and methylmalonic acid as prognostic markers following an acute myocardial infarction. Eur J Clin Nutr 62, 411–418 (2008). https://doi.org/10.1038/sj.ejcn.1602701

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1602701

Keywords

Search

Quick links