Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF?

Abstract

Currently, granulocyte colony stimulating factor (G-CSF) remains the standard mobilizing agent for peripheral blood stem cell (PBSC) donors, allowing the safe collection of adequate PBSCs from the vast majority of donors. However, G-CSF mobilization can be associated with some significant side effects and requires a multi-day dosing regimen. The other cytokine approved for stem cell mobilization, granulocyte-macrophage colony stimulating factor (GM-CSF), alters graft composition and may reduce the development of graft-versus-host disease, but a significant minority of donors fails to provide sufficient CD34+ cells with GM-CSF and some experience unacceptable toxicity. AMD3100 is a promising new mobilizing agent, which may have several advantages over G-CSF for donor mobilization. As it is a direct antagonist of the interaction between the chemokine stromal-derived factor-1 and its receptor CXCR4, AMD3100 mobilizes PBSCs within hours rather than days. It is also well tolerated, with no significant side effects reported in any of the clinical trials to date. Studies of autologous and allogeneic transplantation of AMD3100 mobilized grafts have demonstrated prompt and stable engraftment. Here, we review the current state of stem cell mobilization in normal donors and discuss novel strategies for donor stem cell mobilization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hartmann O, Corroller AGL, Blaise D, Michon J, Philip I, Norol F et al. Peripheral blood stem cell and bone marrow transplantation for solid tumors and lymphomas: hematologic recovery and costs: a randomized, controlled trial. Ann Intern Med 1997; 126: 600–607.

    Article  CAS  PubMed  Google Scholar 

  2. Schmitz N, Dreger P, Linch DC, Goldstone AH, Boogaerts MA, Demuynck HMS et al. Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 1996; 347: 353–357.

    Article  CAS  PubMed  Google Scholar 

  3. Beyer J, Schwella N, Zingsem J, Strohscheer I, Schwaner I, Oettle H et al. Hematopoietic rescue after high-dose chemotherapy using autologous peripheral-blood progenitor cells or bone marrow: a randomized comparison. J Clin Oncol 1995; 13: 1328–1335.

    Article  CAS  PubMed  Google Scholar 

  4. Gratwohl A, Baldomero H, Horisberger B, Schmid C, Passweg J, Urbano-Ispizua A . Current trends in hematopoietic stem cell transplantation in Europe. Blood 2002; 100: 2374–2386.

    Article  CAS  PubMed  Google Scholar 

  5. Korbling M, Anderlini P . Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood 2001; 98: 2900–2908.

    Article  CAS  PubMed  Google Scholar 

  6. Bensinger WI, Martin PJ, Storer B, Clift R, Forman SJ, Negrin R et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 2001; 344: 175–181.

    Article  CAS  PubMed  Google Scholar 

  7. Champlin RE, Schmitz N, Horowitz MM, Chapuis B, Chopra R, Cornelissen JJ et al. Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation. Blood 2000; 95: 3702–3709.

    CAS  PubMed  Google Scholar 

  8. Cutler C, Giri S, Jeyapalan S, Paniagua D, Viswanathan A, Antin JH . Acute and chronic graft-versus-host disease after allogeneic peripheral-blood stem-cell and bone marrow transplantation: a meta-analysis. J Clin Oncol 2001; 19: 3685–3691.

    Article  CAS  PubMed  Google Scholar 

  9. Couban S, Simpson DR, Barnett MJ, Bredeson C, Hubesch L, Howson-Jan K et al. A randomized multicenter comparison of bone marrow and peripheral blood in recipients of matched sibling allogeneic transplants for myeloid malignancies. Blood 2002; 100: 1525–1531.

    Article  CAS  PubMed  Google Scholar 

  10. Mohty M, Kuentz M, Michallet M, Bourhis J-H, Milpied N, Sutton L et al. Chronic graft-versus-host disease after allogeneic blood stem cell transplantation: long-term results of a randomized study. Blood 2002; 100: 3128–3134.

    Article  CAS  PubMed  Google Scholar 

  11. Eapen M, Horowitz MM, Klein JP, Champlin RE, Loberiza Jr FR, Ringden O et al. Higher mortality after allogeneic peripheral-blood transplantation compared with bone marrow in children and adolescents: the Histocompatibility and Alternate Stem Cell Source Working Committee of the International Bone Marrow Transplant Registry. J Clin Oncol 2004; 22: 4872–4880.

    Article  PubMed  Google Scholar 

  12. Craddock CF, Nakamoto B, Andrews RG, Priestley GV, Papayannopoulou T . Antibodies to VLA4 integrin mobilize long-term repopulating cells and augment cytokine-induced mobilization in primates and mice. Blood 1997; 90: 4779–4788.

    Article  CAS  PubMed  Google Scholar 

  13. Kikuta T, Shimazaki C, Ashihara E, Sudo Y, Hirai H, Sumikuma T et al. Mobilization of hematopoietic primitive and committed progenitor cells into blood in mice by anti-vascular adhesion molecule-1 antibody alone or in combination with granulocyte colony-stimulating factor. Exp Hematol 2000; 28: 311–317.

    Article  CAS  PubMed  Google Scholar 

  14. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283: 845–848.

    Article  CAS  PubMed  Google Scholar 

  15. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3: 687–694.

    Article  CAS  PubMed  Google Scholar 

  16. King AG, Horowitz D, Dillon SB, Levin R, Farese AM, MacVittie TJ et al. Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRO{beta}. Blood 2001; 97: 1534–1542.

    Article  CAS  PubMed  Google Scholar 

  17. Pelus LM, Horowitz D, Cooper SC, King AG . Peripheral blood stem cell mobilization: a role for CXC chemokines. Crit Rev Oncol/Hematol 2002; 43: 257–275.

    Article  Google Scholar 

  18. Liu F, Poursine-Laurent J, Link DC . Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 2000; 95: 3025–3031.

    Article  CAS  PubMed  Google Scholar 

  19. Lapidot T, Petit I . Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 2002; 30: 973–981.

    Article  CAS  PubMed  Google Scholar 

  20. Fruehauf S, Seggewiss R . It's moving day: factors affecting peripheral blood stem mobilization and strategies for improvement. Br J Haematol 2003; 122: 360–375.

    Article  CAS  PubMed  Google Scholar 

  21. Levesque J-P, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ . Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 2001; 98: 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  22. Laterveer L, Lindley I, Hamilton M, Willemze R, Fibbe W . Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood 1995; 85: 2269–2275.

    Article  CAS  PubMed  Google Scholar 

  23. Stackx S, Steen PEVD, Wuyts A, Damme JV, Opdenakker G . Neutrophil gelatinase B and chemokines in leukocytosis and stem cell mobilization. Leuke Lymphoma 2002; 43: 233–241.

    Article  CAS  Google Scholar 

  24. Pruijt J, Fibbe W, Laterveer L, Pieters R, Lindley I, Paemen L et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci 1999; 96: 10863–10868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pelus LM, Bian H, King AG, Fukuda S . Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GRO{beta}/CXCL2 and GRO{beta}T/CXCL2{Delta}4. Blood 2004; 103: 110–119.

    Article  CAS  PubMed  Google Scholar 

  26. Levesque J-P, Bendall L, Hendy J, Takamatsu Y, Simmons PJ . Neutrophil enzymes degrade CXCR4 on CD34+ progenitors: implications for progenitor cell mobilization. Blood 2002; 100: 107a.

    Article  Google Scholar 

  27. Christopherson II KW, Hangoc G, Mantel CR, Broxmeyer HE . Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004; 305: 1000–1003.

    Article  CAS  PubMed  Google Scholar 

  28. Christopherson I, Kent W, Cooper S, Hangoc G, Broxmeyer HE . CD26 is essential for normal G-CSF-induced progenitor cell mobilization as determined by CD26−/− mice. Exp Hematol 2003; 31: 1126–1134.

    Article  CAS  PubMed  Google Scholar 

  29. Levesque J-P, Liu F, Simmons PJ, Betsuyaku T, Senior RM, Pham C et al. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 2004; 104: 65–72.

    Article  CAS  PubMed  Google Scholar 

  30. Pruijt J, Verzaal P, Van Os R, de Kruijf E-J, van Schie M, Mantovani A et al. Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci 2002; 99: 6228–6233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005; 106: 3020–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124: 407–421.

    Article  CAS  PubMed  Google Scholar 

  33. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 2006; 12: 657–664.

    Article  CAS  PubMed  Google Scholar 

  34. Mavroudis D, Read E, Cottler-Fox M, Couriel D, Molldrem J, Carter C et al. CD34+ cell dose predicts survival, posttransplant morbidity, and rate of hematologic recovery after allogeneic marrow transplants for hematologic malignancies. Blood 1996; 88: 3223–3229.

    Article  CAS  PubMed  Google Scholar 

  35. Davies SM, Kollman C, Anasetti C, Antin JH, Gajewski J, Casper JT et al. Engraftment and survival after unrelated-donor bone marrow transplantation: a report from the National Marrow Donor Program. Blood 2000; 96: 4096–4102.

    Article  CAS  PubMed  Google Scholar 

  36. Bittencourt H, Rocha V, Chevret S, Socie G, Esperou H, Devergie A et al. Association of CD34 cell dose with hematopoietic recovery, infections, and other outcomes after HLA-identical sibling bone marrow transplantation. Blood 2002; 99: 2726–2733.

    Article  CAS  PubMed  Google Scholar 

  37. Zaucha JM, Gooley T, Bensinger WI, Heimfeld S, Chauncey TR, Zaucha R et al. CD34 cell dose in granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cell grafts affects engraftment kinetics and development of extensive chronic graft-versus-host disease after human leukocyte antigen-identical sibling transplantation. Blood 2001; 98: 3221–3227.

    Article  CAS  PubMed  Google Scholar 

  38. Ilhan O, Arslan O, Arat M, Beksac M, Akan H, Ozcan M et al. The impact of the CD34+ cell dose on engraftment in allogeneic peripheral blood stem cell transplantation. Trans Sci 1999; 20: 69–71.

    Article  CAS  Google Scholar 

  39. Mohty M, Bilger K, Jourdan E, Kuentz M, Michallet M, Bourhis JH et al. Higher doses of CD34+ peripheral blood stem cells are associated with increased mortality from chronic graft-versus-host disease after allogeneic HLA-identical sibling transplantation. Leukemia 2003; 17: 869–875.

    Article  CAS  PubMed  Google Scholar 

  40. Przepiorka D, Smith TL, Folloder J, Khouri I, Ueno NT, Mehra R et al. Risk factors for acute graft-versus-host disease after allogeneic blood stem cell transplantation. Blood 1999; 94: 1465–1470.

    Article  CAS  PubMed  Google Scholar 

  41. Baron F, Maris MB, Storer BE, Sandmaier BM, Panse JP, Chauncey TR et al. High doses of transplanted CD34+ cells are associated with rapid T-cell engraftment and lessened risk of graft rejection, but not more graft-versus-host disease after nonmyeloablative conditioning and unrelated hematopoietic cell transplantation. Leukemia 2005; 19: 822–828.

    Article  CAS  PubMed  Google Scholar 

  42. Heimfeld S . HLA-identical stem cell transplantation: is there an optimal CD34 cell dose? Bone Marrow Transplant 2003; 31: 839–845.

    Article  CAS  PubMed  Google Scholar 

  43. Panse JP, Heimfeld S, Guthrie KA, Maris MB, Maloney DG, Baril BB et al. Allogeneic peripheral blood stem cell graft composition affects early T-cell chimaerism and later clinical outcomes after non-myeloablative conditioning. Br J Haematol 2005; 128: 659–667.

    Article  CAS  PubMed  Google Scholar 

  44. Heimfeld S . Bone marrow transplantation: how important is CD34 cell dose in HLA-identical stem cell transplantation? Leukemia 2003; 17: 856–858.

    Article  CAS  PubMed  Google Scholar 

  45. Sierra J, Storer B, Hansen JA, Bjerke JW, Martin PJ, Petersdorf EW et al. Transplantation of marrow cells from unrelated donors for treatment of high-risk acute leukemia: the effect of leukemic burden, donor HLA-matching, and marrow cell dose. Blood 1997; 89: 4226–4235.

    Article  CAS  PubMed  Google Scholar 

  46. Fischmeister G, Gadner H . Granulocyte colony-stimulating factor versus granulocyte-macrophage colony-stimulating factor for collection of peripheral blood progenitor cells from healthy donors. Curr Opin Hematol 2000; 7: 150–155.

    Article  CAS  PubMed  Google Scholar 

  47. Korbling M, Huh Y, Durett A, Mirza N, Miller P, Engel H et al. Allogeneic blood stem cell transplantation: peripheralization and yield of donor-derived primitive hematopoietic progenitor cells (CD34+ Thy−1dim) and lymphoid subsets, and possible predictors of engraftment and graft-versus-host disease. Blood 1995; 86: 2842–2848.

    Article  CAS  PubMed  Google Scholar 

  48. Anderlini P, Przepiorka D, Seong C, Smith T, Huh Y, Lauppe J et al. Factors affecting mobilization of CD34+ cells in normal donors treated with filgrastim. Transfusion 1997; 37: 507–512.

    Article  CAS  PubMed  Google Scholar 

  49. Grigg A, Roberts A, Raunow H, Houghton S, Layton J, Boyd A et al. Optimizing dose and scheduling of filgrastim (granulocyte colony-stimulating factor) for mobilization and collection of peripheral blood progenitor cells in normal volunteers. Blood 1995; 86: 4437–4445.

    Article  CAS  PubMed  Google Scholar 

  50. Holm M . Not all healthy donors mobilize hematopoietic progenitor cells sufficiently after G-CSF administration to allow for subsequent CD34 purification of the leukapheresis product. J Hematother 1998; 7: 111–113.

    Article  CAS  PubMed  Google Scholar 

  51. Anderlini P, Rizzo JD, Nugent ML, Schmitz N, Champlin RE, Horowitz MM . Peripheral blood stem cell donation: an analysis from the international bone marrow transplant registry (IBMTR) and European group for blood and marrow transplant (EBMT) databases. Bone Marrow Transplant 2001; 27: 689–692.

    Article  CAS  PubMed  Google Scholar 

  52. de la Rubia J, Arbona C, de Arriba F, del Canizo C, Brunet S, Zamora C et al. Analysis of factors associated with low peripheral blood progenitor cell collection in normal donors. Transfusion 2002; 42: 4–9.

    Article  PubMed  Google Scholar 

  53. Suzuya H, Watanabe T, Nakagawa R, Watanabe H, Okamoto Y, Onishi T et al. Factors associated with granulocyte colony-stimulating factor-induced peripheral blood stem cell yield in healthy donors. Vox Sang 2005; 89: 229–235.

    Article  CAS  PubMed  Google Scholar 

  54. Lysak D, Koza V, Jindra P . Factors affecting PBSC mobilization and collection in healthy donors. Trans Aph Sci 2005; 33: 275–283.

    Article  Google Scholar 

  55. Anderlini P, Przepiorka D, Champlin R, Korbling M . Biologic and clinical effects of granulocyte colony-stimulating factor in normal individuals. Blood 1996; 88: 2819–2825.

    Article  CAS  PubMed  Google Scholar 

  56. Rowley SD, Donaldson G, Lilleby K, Bensinger WI, Appelbaum FR . Experiences of donors enrolled in a randomized study of allogeneic bone marrow or peripheral blood stem cell transplantation. Blood 2001; 97: 2541–2548.

    Article  CAS  PubMed  Google Scholar 

  57. Fortanier C, Kuentz M, Sutton L, Milpied N, Michalet M, Macquart-Moulin G et al. Healthy sibling donor anxiety and pain during bone marrow or peripheral blood stem cell harvesting for allogeneic transplantation: results of a randomised study. Bone Marrow Transplant 2002; 29: 145–149.

    Article  CAS  PubMed  Google Scholar 

  58. Murata M, Harada M, Kato S, Takahashi S, Ogawa H, Okamoto S et al. Peripheral blood stem cell mobilization and apheresis: analysis of adverse events in 94 normal donors. Bone Marrow Transplant 1999; 24: 1065–1071.

    Article  CAS  PubMed  Google Scholar 

  59. Anderlini P, Przepiorka D, Korbling M, Champlin R . Blood stem cell procurement: donor safety issues. Bone Marrow Transplant 1998; 21 (Suppl 3): S35–S39.

    PubMed  Google Scholar 

  60. Stroncek D, Shawker T, Follmann D, Leitman SF . G-CSF-induced spleen size changes in peripheral blood progenitor cell donors. Transfusion 2003; 43: 609–613.

    Article  CAS  PubMed  Google Scholar 

  61. Platzbecker U, Prange-Krex G, Bornhauser M, Koch R, Soucek S, Aikele P et al. Spleen enlargement in healthy donors during G-CSF mobilization of PBPCs. Transfusion 2001; 41: 184–189.

    Article  CAS  PubMed  Google Scholar 

  62. Stroncek D, Dittmar K, Shawker T, Heatherman A, Leitman S . Transient spleen enlargement in peripheral blood progenitor cell donors given G-CSF. J Transl Med 2004; 2: 25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Falzetti F, Aversa F, Minelli O, Tabilio A . Spontaneous rupture of spleen during peripheral blood stem-cell mobilisation in a healthy donor. Lancet 1999; 353: 555.

    CAS  PubMed  Google Scholar 

  64. Becker P, Wagle M, Matous S, Swanson R, Pihan G, Lowry P et al. Spontaneous splenic rupture following administration of granulocyte colony-stimulating factor (G-CSF): occurrence in an allogeneic donor of peripheral blood stem cells. Biol Blood Marrow Transplant 1997; 3: 45–49.

    CAS  PubMed  Google Scholar 

  65. Kröger N, Renges H, Sonnenberg S, Krüger W, Gutensohn K, Dielschneider T et al. Stem cell mobilisation with 16 vs 10 μg/kg of G-CSF for allogeneic transplantation in healthy donors. Bone Marrow Transplant 2002; 29: 727–730.

    Article  PubMed  Google Scholar 

  66. Dincer AP, Gottschall J, Margolis DA . Splenic rupture in a parental donor undergoing peripheral blood progenitor cell mobilization. J Pediatr Hematol Oncol 2004; 26: 761–763.

    Article  PubMed  Google Scholar 

  67. Balaguer H, Galmes A, Ventayol G, Bargay J, Besalduch J . Splenic rupture after granulocyte-colony-stimulating factor mobilization in a peripheral blood progenitor cell donor. Transfusion 2004; 44: 1260–1261.

    Article  PubMed  Google Scholar 

  68. de la Rubia J, Martínez C, Solano C, Brunet S, Cascón P, Arrieta R et al. Administration of recombinant human granulocyte colony-stimulating factor to normal donors: results of the Spanish National Donor Registry. Bone Marrow Transplant 1999; 24: 723–728.

    Article  CAS  PubMed  Google Scholar 

  69. Fukumoto Y, Miyamoto T, Okamura T, Gondo H, Iwasaki H, Horiuchi T et al. Angina pectoris occurring during granulocyte colony-stimulating factor-combined preparatory regimen for autologous peripheral blood stem cell transplantation in a patient with acute myelogenous leukaemia. Br J Haematol 1997; 97: 666–668.

    Article  CAS  PubMed  Google Scholar 

  70. Hill JM, Syed MA, Arai AE, Powell TM, Paul JD, Zalos G et al. Outcomes and risks of granulocyte colony-stimulating factor in patients with coronary artery disease. J Am Coll Cardiol 2005; 46: 1643–1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lindemann A, Rumberger B . Vascular complications in patients treated with granulocyte colony-stimulating factor (G-CSF). Eur J Cancer 1993; 29: 2338–2339.

    Article  Google Scholar 

  72. Dagia NM, Gadhoum SZ, Knoblauch CA, Spencer JA, Zamiri P, Lin CP et al. G-CSF induces E-selectin ligand expression on human myeloid cells. Nat Med 2006; 12: 1185–1190.

    Article  CAS  PubMed  Google Scholar 

  73. Adler BK, Salzman DE, Carabasi MH, Vaughan WP, Reddy VVB, Prchal JT . Fatal sickle cell crisis after granulocyte colony-stimulating factor administration. Blood 2001; 97: 3313–3314.

    Article  CAS  PubMed  Google Scholar 

  74. Kang EM, Areman EM, David-Ocampo V, Fitzhugh C, Link ME, Read EJ et al. Mobilization, collection, and processing of peripheral blood stem cells in individuals with sickle cell trait. Blood 2002; 99: 850–855.

    Article  CAS  PubMed  Google Scholar 

  75. Horowitz MM, Confer DL . Evaluation of hematopoietic stem cell donors. Hematology 2005; 2005: 469–475.

    Article  Google Scholar 

  76. Nash RA, Bowen JD, McSweeney PA, Pavletic SZ, Maravilla KR, Park M-S et al. High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood 2003; 102: 2364–2372.

    Article  CAS  PubMed  Google Scholar 

  77. Stricker RB, Goldberg B . G-CSF and exacerbation of rheumatoid arthritis. Am J Med 1996; 100: 665–666.

    Article  CAS  PubMed  Google Scholar 

  78. Burt RK, Fassas A, Snowden J, van Laar JM, Kozak T, Wulffraat NM et al. Collection of hematopoietic stem cells from patients with autoimmune diseases. Bone Marrow Transplant 2001; 28: 1–12.

    Article  CAS  PubMed  Google Scholar 

  79. Gottenberg JE, Roux S, Desmoulins F, Clerc D, Mariette X . Granulocyte colony-stimulating factor therapy resulting in a flare of systemic lupus erythematosus: comment on the article by Yang and Hamilton. Arthritis Rheum 2001; 44: 2458–2460.

    Article  CAS  PubMed  Google Scholar 

  80. Mahmud N, Devine SM, Weller KP, Parmar S, Sturgeon C, Nelson MC et al. The relative quiescence of hematopoietic stem cells in nonhuman primates. Blood 2001; 97: 3061–3068.

    Article  CAS  PubMed  Google Scholar 

  81. Hernandez JM, Castilla C, Gutierrez NC, Isidro IM, Delgado M, de las Rivas J et al. Mobilisation with G-CSF in healthy donors promotes a high but temporal deregulation of genes. Leukemia 2005; 19: 1088–1091.

    Article  CAS  PubMed  Google Scholar 

  82. Nagler A, Korenstein-Ilan A, Amiel A, Avivi L . Granulocyte colony-stimulating factor generates epigenetic and genetic alterations in lymphocytes of normal volunteer donors of stem cells. Exp Hematol 2004; 32: 122–130.

    Article  CAS  PubMed  Google Scholar 

  83. Pamphilon D, Mackinnon S, Nacheva E, Russell N, Wilson K, Clay M et al. The use of granulocyte colony-stimulating factor in volunteer blood and marrow registry donors. Bone Marrow Transplant 2006; 38: 699–700.

    Article  CAS  PubMed  Google Scholar 

  84. Bennett CL, Evens AM, Andritsos LA, Balasubramanian L, Mai M, Fisher MJ et al. Haematological malignancies developing in previously healthy individuals who received haematopoietic growth factors: report from the Research on Adverse Drug Events and Reports (RADAR) project. Br J Haematol 2006; 135: 642–650.

    Article  CAS  PubMed  Google Scholar 

  85. Makita K, Ohta K, Mugitani A, Hagihara K, Ohta T, Yamane T et al. Acute myelogenous leukemia in a donor after granulocyte colony-stimulating factor-primed peripheral blood stem cell harvest. Bone Marrow Transplant 2004; 33: 661–665.

    Article  CAS  PubMed  Google Scholar 

  86. Hasenclever D, Sextro M . Safety of AlloPBPCT donors: biometrical considerations on monitoring long term risks. Bone Marrow Transplant 1996; 17 (Suppl 2): S28–S30.

    PubMed  Google Scholar 

  87. Rauscher GH, Sandler DP, Poole C, Pankow J, Mitchell B, Bloomfield CD et al. Family history of cancer and incidence of acute leukemia in adults. Am J Epidemiol 2002; 156: 517–526.

    Article  PubMed  Google Scholar 

  88. Shpilberg O, Modan M, Modan B, Chetrit A, Fuchs Z, Ramot B . Familial aggregation of haematological neoplasms: a controlled study. Br J Haematol 1994; 87: 75–80.

    Article  CAS  PubMed  Google Scholar 

  89. Pulsipher MA, Nagler A, Iannone R, Nelson RM . Weighing the risks of G-CSF administration, leukopheresis, and standard marrow harvest: ethical and safety considerations for normal pediatric hematopoietic cell donors. Pediatr Blood Cancer 2006; 46: 422–433.

    Article  PubMed  Google Scholar 

  90. Shpall EJ, Wheeler CA, Turner SA, Yanovich S, Brown RA, Pecora AL et al. A randomized phase 3 study of peripheral blood progenitor cell mobilization with stem cell factor and filgrastim in high-risk breast cancer patients. Blood 1999; 93: 2491–2501.

    CAS  PubMed  Google Scholar 

  91. Stiff P, Gingrich R, Luger S, Wyres M, Brown RA, LeMaistre CF et al. A randomized phase 2 study of PBSC mobilization by stem cell factor and filgrastim in heavily pretreated patients with Hodgkin's disease or non-Hodgkin's lymphoma. Bone Marrow Transplant 2000; 26: 471–481.

    Article  CAS  PubMed  Google Scholar 

  92. Linker C, Anderlini P, Herzig R, Christiansen N, Somlo G, Bensinger W et al. Recombinant human thrombopoietin augments mobilization of peripheral blood progenitor cells for autologous transplantation. Biol Blood Marrow Transplant 2003; 9: 405–413.

    Article  CAS  PubMed  Google Scholar 

  93. Spitzer G, Adkins D, Mathews M, Velasquez W, Bowers C, Dunphy F et al. Randomized comparison of G-CSF+GM-CSF vs G-CSF alone for mobilization of peripheral blood stem cells: effects on hematopoietic recovery after high-dose chemotherapy. Bone Marrow Transplant 1997; 20: 921–930.

    Article  CAS  PubMed  Google Scholar 

  94. Gazzitt Y . Comparison between granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in the mobilization of peripheral blood stem cells. Curr Opin Hematol 2002; 9: 190–198.

    Article  Google Scholar 

  95. Weaver CH, Schulman KA, Wilson-Relyea B, Birch R, West W, Buckner CD . Randomized trial of filgrastim, sargramostim, or sequential sargramostim and filgrastim after myelosuppressive chemotherapy for the harvesting of peripheral-blood stem cells. J Clin Oncol 2000; 18: 43.

    Article  CAS  PubMed  Google Scholar 

  96. Lane T, Law P, Maruyama M, Young D, Burgess J, Mullen M et al. Harvesting and enrichment of hematopoietic progenitor cells mobilized into the peripheral blood of normal donors by granulocyte-macrophage colony-stimulating factor (GM-CSF) or G-CSF: potential role in allogeneic marrow transplantation. Blood 1995; 85: 275–282.

    Article  CAS  PubMed  Google Scholar 

  97. Peters W, Rosner G, Ross M, Vredenburgh J, Meisenberg B, Gilbert C et al. Comparative effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) on priming peripheral blood progenitor cells for use with autologous bone marrow after high-dose chemotherapy. Blood 1993; 81: 1709–1719.

    Article  CAS  PubMed  Google Scholar 

  98. Devine S, Brown R, Mathews V, Trinkaus K, Khoury H, Adkins D et al. Reduced risk of acute GVHD following mobilization of HLA-identical sibling donors with GM-CSF alone. Bone Marrow Transplant 2005; 36: 531–538.

    Article  CAS  PubMed  Google Scholar 

  99. De Clercq E . The bicyclam AMD3100 story. Nat Rev 2003; 2: 581–587.

    CAS  Google Scholar 

  100. Burroughs L, Mielcarek M, Little M-T, Bridger G, MacFarland R, Fricker S et al. Durable engraftment of AMD3100-mobilized autologous and allogeneic peripheral-blood mononuclear cells in a canine transplantation model. Blood 2005; 106: 4002–4008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005; 201: 1307–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Larochelle A, Krouse A, Metzger M, Orlic D, Donahue RE, Fricker S et al. AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates. Blood 2006; 107: 3772–3778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hess DA, Wirthlin L, Craft TP, Bonde J, Lahey RW, Hohm SA et al. Human CD34+cells mobilized by AMD3100 demonstrate enhanced NOD/SCID repopulating function compared to CD34+ cells mobilized by granulocyte colony stimulating factor. Blood 2005; 106: 1962.

    Article  Google Scholar 

  104. Liles WC, Broxmeyer HE, Rodger E, Wood B, Hubel K, Cooper S et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 2003; 102: 2728–2730.

    Article  CAS  PubMed  Google Scholar 

  105. Liles WC, Rodger E, Broxmeyer HE, Dehner C, Badel K, Calandra G et al. Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with granulocyte-colony-stimulating factor by single-dose administration of AMD3100, a CXCR4 antagonist. Transfusion 2005; 45: 295–300.

    Article  CAS  PubMed  Google Scholar 

  106. Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdorf D, Badel K et al. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin's lymphoma. J Clin Oncol 2004; 22: 1095–1102.

    Article  CAS  PubMed  Google Scholar 

  107. Flomenberg N, Devine SM, DiPersio JF, Liesveld JL, McCarty JM, Rowley SD et al. The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 2005; 106: 1867–1874.

    Article  CAS  PubMed  Google Scholar 

  108. Cashen A, Devine S, Vij R, DiPersio J . AMD3100+G-CSF improves hematopoietic progenitor cell (HPC) collection in patients with Hodgkin's disease (HD). Blood 2005; 106: 1979.

    Article  Google Scholar 

  109. Devine SM, Andritsos L, Todt L, Vij R, Bonde J, Hess D et al. A pilot study evaluating the safety and efficacy of AMD3100 for the mobilization and transplantation of HLA-matched sibling donor hematopoietic stem cells in patients with advanced hematological malignancies. Blood 2005; 106: 299.

    Article  Google Scholar 

  110. Arpinati M, Green CL, Heimfeld S, Heuser JE, Anasetti C . Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 2000; 95: 2484–2490.

    Article  CAS  PubMed  Google Scholar 

  111. Liu Y-J, Blom B . Introduction: TH2-inducing DC2 for immunotherapy. Blood 2000; 95: 2482–2483.

    Article  CAS  PubMed  Google Scholar 

  112. Pan L, Delmonte Jr J, Jalonen CK, Ferrara JL . Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. Blood 1995; 86: 4422–4429.

    Article  CAS  PubMed  Google Scholar 

  113. Pulendran B, Banchereau J, Burkeholder S, Kraus E, Guinet E, Chalouni C et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol 2000; 165: 566–572.

    Article  CAS  PubMed  Google Scholar 

  114. Reddy V . Granulocyte colony-stimulating factor mobilization alters dendritic cell cytokine production and initiates T helper 2 polarization prior to host alloantigen presentation. Blood 2000; 96: 2635.

    Article  CAS  PubMed  Google Scholar 

  115. Rondelli D, Raspadori D, Anasetti C, Bandini G, Re F, Arpinati M et al. Alloantigen presenting capacity, T cell alloreactivity and NK function of G-CSF-mobilized peripheral blood cells. Bone Marrow Transplant 1998; 22: 631–637.

    Article  CAS  PubMed  Google Scholar 

  116. Vasconcelos ZFM, dos Santos BM, Farache J, Palmeira TSS, Areal RB, Cunha JMT et al. G-CSF-treated granulocytes inhibit acute graft-versus-host disease. Blood 2006; 107: 2192–2199.

    Article  CAS  PubMed  Google Scholar 

  117. Hill GR, Morris ES, Fuery M, Hutchins C, Butler J, Grigg A et al. Allogeneic stem cell transplantation with peripheral blood stem cells mobilized by pegylated G-CSF. Biol Blood Marrow Transplant 2006; 12: 603–607.

    Article  PubMed  Google Scholar 

  118. Morris ES, MacDonald KPA, Rowe V, Banovic T, Kuns RD, Don ALJ et al. NKT cell-dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs. J Clin Invest 2005; 115: 3093–3103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. MacDonald KPA, Rowe V, Filippich C, Thomas R, Clouston AD, Welply JK et al. Donor pretreatment with progenipoietin-1 is superior to granulocyte colony-stimulating factor in preventing graft-versus-host disease after allogeneic stem cell transplantation. Blood 2003; 101: 2033–2042.

    Article  CAS  PubMed  Google Scholar 

  120. Scadden DT . The stem-cell niche as an entity of action. Nature 2006; 441: 1075–1079.

    Article  CAS  PubMed  Google Scholar 

  121. Taichman RS . Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 2005; 105: 2631–2639.

    Article  CAS  PubMed  Google Scholar 

  122. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    Article  CAS  PubMed  Google Scholar 

  123. Ballen KK, Shpall EJ, Avigan D, Yeap B, McAfee S, Dey BR et al. Parathyroid hormone may improve autologous stem cell mobilization via the stem cell niche. ASH Annual Meeting Abstracts 2005; 106: 1968.

    Google Scholar 

  124. Galotto M, Berisso G, Delfino L, Podesta M, Ottaggio L, Dallorso S et al. Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 1999; 27: 1460–1466.

    Article  CAS  PubMed  Google Scholar 

  125. Gordon MY . The origin of stromal cells in patients treated by bone marrow transplantation. Bone Marrow Transplant 1988; 3: 247–251.

    CAS  PubMed  Google Scholar 

  126. Keating A, Singer JW, Killen PD, Striker GE, Salo AC, Sanders J et al. Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature 1982; 298: 280–283.

    Article  CAS  PubMed  Google Scholar 

  127. Koc ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R et al. Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 1999; 27: 1675–1681.

    Article  CAS  PubMed  Google Scholar 

  128. Laver J, Jhanwar SC, O'Reilly RJ, Castro-Malaspina H . Host origin of the human hematopoietic microenvironment following allogeneic bone marrow transplantation. Blood 1987; 70: 1966–1968.

    Article  CAS  PubMed  Google Scholar 

  129. Simmons PJ, Przepiorka D, Thomas ED, Torok-Storb B . Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 1987; 328: 429–432.

    Article  CAS  PubMed  Google Scholar 

  130. Hill JM, Bartunek J . The end of granulocyte colony-stimulating factor in acute myocardial infarction?: reaping the benefits beyond cytokine mobilization. Circulation 2006; 113: 1926–1928.

    Article  PubMed  Google Scholar 

  131. Ripa RS, Jorgensen E, Wang Y, Thune JJ, Nilsson JC, Sondergaard L et al. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation 2006; 113: 1983–1992.

    Article  CAS  PubMed  Google Scholar 

  132. Zohlnhofer D, Ott I, Mehilli J, Schomig K, Michalk F, Ibrahim T et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 2006; 295: 1003–1010.

    Article  PubMed  Google Scholar 

  133. Ince H, Petzsch M, Kleine HD, Eckard H, Rehders T, Burska D et al. Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by granulocyte colony-stimulating factor (FIRSTLINE-AMI) trial. Circulation 2005; 112 (Suppl 9): I-73–I-80.

    Google Scholar 

  134. Shepherd RM, Capoccia BJ, Devine SM, DiPersio J, Trinkaus KM, Ingram D et al. Angiogenic cells can be rapidly mobilized and efficiently harvested from the blood following treatment with AMD3100. Blood 2006; 108: 3662–3667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yoder MC . ‘Quick’ fix to add to the mix? Blood 2006; 108: 3625–3626.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Devine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cashen, A., Lazarus, H. & Devine, S. Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF?. Bone Marrow Transplant 39, 577–588 (2007). https://doi.org/10.1038/sj.bmt.1705616

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705616

Keywords

This article is cited by

Search

Quick links