Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Allografting

Allogeneic stem cell transplantation in X-linked lymphoproliferative disease: two cases in one family and review of the literature

Summary:

X-linked lymphoproliferative disease (XLP) is a rare immunodeficiency caused by mutations in the signaling lymphocyte activating molecule-associated protein/SH2D1A gene and characterized by a dysregulated immune response to Epstein–Barr virus and other pathogens. The clinical presentation is heterogeneous and includes fulminant infectious mononucleosis, lymphoma, hypogammaglobulinemia and aplastic anemia. XLP is associated with a high morbidity and overall outcome is poor. At present, allogeneic stem cell transplantation (alloSCT) is the only curative treatment. XLP patients may be recognized in various stages of disease and even when symptoms are not yet evident. We here present two related XLP patients in different stages of disease that were both treated successfully with alloSCT using a matched unrelated donor. In addition, we have reviewed all reported cases of alloSCTs in XLP patients. Based on these results and in order to improve the final outcome, we conclude that alloSCT should be recommended in both symptomatic and asymptomatic XLP patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Seemayer TA, Gross TG, Egeler RM et al. X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr Res 1995; 38: 471–478.

    Article  CAS  PubMed  Google Scholar 

  2. Gaspar HB, Sharifi R, Gilmour KC, Thrasher AJ . X-linked lymphoproliferative disease: clinical, diagnostic and molecular perspective. Br J Hematol 2002; 119: 585–595.

    Article  CAS  Google Scholar 

  3. Purtilo DT, Cassel CK, Yang JP, Harper R . X-linked recessive progressive combined variable immunodeficiency (Duncan's disease). Lancet 1995; 1: 935–940.

    Google Scholar 

  4. Purtilo DT, Sakamoto K, Barnabei V et al. Epstein–Barr virus-induced diseases in boys with the X-linked lymphoproliferative syndrome (XLP): update on studies of the registry. Am J Med 1982; 73: 49–56.

    Article  CAS  PubMed  Google Scholar 

  5. Harrington DS, Weisenburger DD, Purtilo DT . Malignant lymphoma in the X-linked lymphoproliferative syndrome. Cancer 1987; 59: 1419–1429.

    Article  CAS  PubMed  Google Scholar 

  6. Grierson HL, Skare J, Hawk J et al. Immunoglobulin class and subclass deficiencies prior to Epstein–Barr virus infection in males with X-linked lymphoproliferative disease. Am J Med Genet 1991; 40: 294–297.

    Article  CAS  PubMed  Google Scholar 

  7. Sumegi J, Huang D, Lanyi A et al. Correlation of mutations of the SH2D1A gene and Epstein–Barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood 2000; 96: 3118–3125.

    CAS  PubMed  Google Scholar 

  8. Harada S, Sakamoto K, Seeley JK et al. Immune deficiency in the X-linked lymphoproliferative syndrome. I. Epstein–Barr virus-specific defects. J Immunol 1982; 129: 2532–2535.

    CAS  PubMed  Google Scholar 

  9. Yasuda N, Lai PK, Rogers J, Purtilo DT . Defective control of Epstein–Barr virus-infected B cell growth in patients with X-linked lymphoproliferative disease. Clin Exp Immunol 1991; 83: 10–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sullivan JL, Byron KS, Brewster FE et al. X-linked lymphoproliferative syndrome. Natural history of the immunodeficiency. J Clin Invest 1983; 71: 1765–1778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Okano M, Pirruccello SJ, Grierson HL et al. Immunovirological studies of fatal infectious mononucleosis in a patient with X-linked lymphoproliferative syndrome treated with intravenous immunoglobulin and interferon-alpha. Clin Immunol Immunopathol 1990; 54: 410–418.

    Article  CAS  PubMed  Google Scholar 

  12. Coffey AJ, Brooksbank RA, Brandau O et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet 1998; 20: 129–135.

    Article  CAS  PubMed  Google Scholar 

  13. Sayos J, Wu C, Morra M et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 1998; 395: 462–469.

    Article  CAS  PubMed  Google Scholar 

  14. Latour S, Veillette A . Molecular and immunological basis of X-linked lymphoproliferative disease. Immunol Rev 2003; 192: 212–224.

    Article  CAS  PubMed  Google Scholar 

  15. Cocks BG, Chang CC, Carballido JM et al. A novel receptor involved in T-cell activation. Nature 1995; 376: 260–263.

    Article  CAS  PubMed  Google Scholar 

  16. Tangye SG, Lazetic S, Woollatt E et al. Cutting edge: human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP. J Immunol 1999; 162: 6981–6985.

    CAS  PubMed  Google Scholar 

  17. Brandau O, Schuster V, Weiss M et al. Epstein–Barr virus-negative boys with non-Hodgkin lymphoma are mutated in the SH2D1A gene, as are patients with X-linked lymphoproliferative disease (XLP). Hum Mol Genet 1999; 8: 2407–2413.

    Article  CAS  PubMed  Google Scholar 

  18. Yin L, Ferrand V, Lavoue MF et al. SH2D1A mutation analysis for diagnosis of XLP in typical and atypical patients. Hum Genet 1999; 105: 501–505.

    Article  CAS  PubMed  Google Scholar 

  19. Parolini S, Bottino C, Falco M et al. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein–Barr virus-infected cells. J Exp Med 2000; 192: 337–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakamura H, Zarycki J, Sullivan JL, Jung JU . Abnormal T cell receptor signal transduction of CD4 Th cells in X-linked lymphoproliferative syndrome. J Immunol 2001; 167: 2657–2665.

    Article  CAS  PubMed  Google Scholar 

  21. Sharifi R, Sinclair JC, Gilmour KC et al. SAP mediates specific cytotoxic T-cell functions in X-linked lymphoproliferative disease. Blood 2004; 103: 3821–3827.

    Article  CAS  PubMed  Google Scholar 

  22. Engel P, Eck MJ, Terhorst C . The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nat Rev Immunol 2003; 3: 813–821.

    Article  CAS  PubMed  Google Scholar 

  23. Nistala K, Gilmour KC, Cranston T et al. X-linked lymphoproliferative disease: three atypical cases. Clin Exp Immunol 2001; 126: 126–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eastwood D, Gilmour KC, Nistala K et al. Prevalence of SAP gene defects in male patients diagnosed with common variable immunodeficiency. Clin Exp Immunol 2004; 137: 584–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Strahm B, Rittweiler K, Duffner U et al. Recurrent B-cell non-Hodgkin's lymphoma in two brothers with X-linked lymphoproliferative disease without evidence for Epstein–Barr virus infection. Br J Haematol 2000; 108: 377–382.

    Article  CAS  PubMed  Google Scholar 

  26. Milone M, Tsai DE, Hodinka RL et al. Treatment of primary Epstein–Barr virus infection in patients with X-linked lymphoproliferative disease using B-cell directed therapy. Blood 2005; 105: 994–996.

    Article  CAS  PubMed  Google Scholar 

  27. Filipovich AH, Blazar BR, Ramsay NKC et al. Allogeneic bone marrow transplantation for X-linked lymphoproliferative syndrome. Transplantation 1986; 42: 222–224.

    CAS  PubMed  Google Scholar 

  28. Williams LL, Rooney CM, Conley ME et al. Correction of Duncan's syndrome by allogeneic bone marrow transplantation. Lancet 1993; 342: 587–588.

    Article  CAS  PubMed  Google Scholar 

  29. Vowels MR, Lam-Po-Tang R, Berdoukas V et al. Brief report: correction of X-linked lymphoproliferative disease by transplantation of cord-blood stem cells. N Engl J Med 1993; 329: 1623–1625.

    Article  CAS  PubMed  Google Scholar 

  30. Pracher E, Panzer-Grumayer ER, Zoubek A et al. Successful bone marrow transplantation in a boy with X-linked lymphoproliferative syndrome and acute severe infectious mononucleosis. Bone Marrow Transplant 1994; 13: 655–658.

    CAS  PubMed  Google Scholar 

  31. Gross TG, Filipovich AH, Conley ME et al. Cure of X-linked lymphoproliferative disease (XLP) with allogeneic hematopoietic stem cell transplantation (HSCT): report from the XLP registry. Bone Marrow Transplant 1996; 17: 741–744.

    CAS  PubMed  Google Scholar 

  32. Hoffmann T, Heilman C, Madsen HO et al. Matched unrelated allogeneic bone marrow transplantation for recurrent malignant lymphoma in a patient with X-linked lymphoproliferative disease (XLP). Bone Marrow Transplant 1998; 22: 603–604.

    Article  CAS  PubMed  Google Scholar 

  33. Arkwright PD, Makin G, Will AM et al. X linked lymphoproliferative disease in a United Kingdom family. Arch Dis Childhood 1998; 79: 52–55.

    Article  CAS  Google Scholar 

  34. Amrolia P, Gaspar HB, Hassan A et al. Nonmyeloablative stem cell transplantation for congenital immunodeficiencies. Blood 2000; 96: 1239–1246.

    CAS  PubMed  Google Scholar 

  35. Ziegner UHM, Ochs HD, Schanen C et al. Unrelated umbilical cord stem cell transplantation for X-linked immunodeficiencies. J Pediatr 2001; 138: 570–573.

    Article  CAS  PubMed  Google Scholar 

  36. Niesters HG, van Esser J, Fries E et al. Development of a real-time quantitative assay for detection of Epstein–Barr virus. J Clin Microbiol 2000; 38: 712–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Antoine C, Muller S, Cant A et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–1999. Lancet 2003; 361: 553–560.

    Article  PubMed  Google Scholar 

  38. Gennery AR, Khawaja K, Veys P et al. Treatment of CD40 ligand deficiency by hematopoietic stem cell transplantation: a survey of the European experience, 1993–2002. Blood 2004; 103: 1152–1157.

    Article  CAS  PubMed  Google Scholar 

  39. Junghanss C, Storb R, Maris MB et al. Impact of unrelated donor status on the incidence and outcome of cytomegalovirus infections after non-myeloablative allogeneic stem cell transplantation. Br J Haematol 2002; 123: 662–670.

    Article  Google Scholar 

  40. Chakrabarti S, Mackinnon S, Chopra R et al. High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: potential role of Campath-1H in delaying immune reconstitution. Blood 2002; 99: 4357–4363.

    Article  CAS  PubMed  Google Scholar 

  41. Rao K, Amrolia PJ, Jones A et al. Improved survival after unrelated donor bone marrow transplant in children with primary immunodeficiency using a reduced intensity conditioning regimen. Blood 2005; 105: 879–885.

    Article  CAS  PubMed  Google Scholar 

  42. van Esser JW, van der Holt B, Meijer E et al. Epstein–Barr virus (EBV) reactivation is a frequent event after allogeneic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell-depleted SCT. Blood 2001; 98: 972–978.

    Article  CAS  PubMed  Google Scholar 

  43. Lankester AC, van Tol MJ, Vossen JM et al. Epstein–Barr virus (EBV)-DNA quantification in pediatric allogeneic stem cell recipients: prediction of EBV-associated lymphoproliferative disease. Blood 2001; 99: 2630–2631.

    Article  Google Scholar 

  44. Martin PJ, Schulman HM, Schubach WH et al. Fatal Epstein–Barr virus associated proliferation of donor B cells after treatment of acute graft-versus-host disease with a murine anti-T cell antibody. Ann Int Med 1984; 101: 310.

    Article  CAS  PubMed  Google Scholar 

  45. Zutter MM, Martin PJ, Sale GE et al. Epstein–Barr virus lymphoproliferation after bone marrow transplantation. Blood 1988; 72: 520–529.

    CAS  PubMed  Google Scholar 

  46. Hale G, Waldmann H . Risks of developing Epstein–Barr virus-related lymphoproliferative disorders after T-cell-depleted marrow transplants. Blood 1998; 91: 3079–3083.

    CAS  PubMed  Google Scholar 

  47. Cohen JI . Epstein–Barr virus infection. N Engl J Med 2000; 343: 481–491.

    Article  CAS  PubMed  Google Scholar 

  48. Rooney CM, Smith CA, Ng CY et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 1998; 92: 1549–1555.

    CAS  PubMed  Google Scholar 

  49. Henter JI, Samuelsson-Horne A, Arico M et al. Treatment of hemophagocytic lymphohistiocytosis with HLH-94 immunochemotherapy and bone marrow transplantation. Blood 2002; 100: 2367–2373.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A C Lankester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lankester, A., Visser, L., Hartwig, N. et al. Allogeneic stem cell transplantation in X-linked lymphoproliferative disease: two cases in one family and review of the literature. Bone Marrow Transplant 36, 99–105 (2005). https://doi.org/10.1038/sj.bmt.1705016

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705016

Keywords

This article is cited by

Search

Quick links