Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Core-collapse supernova explosion theory

Abstract

Most supernova explosions accompany the death of a massive star. These explosions give birth to neutron stars and black holes, and eject solar masses of heavy elements. However, determining the mechanism of explosion has been a half-century journey of great numerical and physical complexity. Here we present the status of this theoretical quest and the physics and astrophysics upon which its resolution seems to depend. The delayed neutrino-heating mechanism is emerging as the key driver of supernova explosions, but there remain many issues to address, such as the chaos of the involved dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Progenitor mass density profiles.
Fig. 2: Turbulence in the belly of the beast.
Fig. 3: Early 3D explosion of the core of a 16M star using Fornax.
Fig. 4: Mean shock radii of 2D models.
Fig. 5: Explosion energy and residual neutron star baryon mass.
Fig. 6: Comparison of theoretical and empirical explosion energy versus ejecta mass.
Fig. 7: 3D explosion structure of a representative massive-star progenitor model.

Similar content being viewed by others

References

  1. Chandrasekhar, S. An Introduction to the Study of Stellar Structure (Dover Publications, 1939).

  2. O’Connor, E. et al. Global comparison of core-collapse supernova simulations in spherical symmetry. J. Phys. G 45, 104001 (2018). One of the few group-to-group and code-to-code comparison papers in supernova theory.

    Article  ADS  CAS  Google Scholar 

  3. Radice, D., Burrows, A., Vartanyan, D., Skinner, M. A. & Dolence, J. C. Electron-capture and low-mass iron-core-collapse supernovae: new neutrino-radiation-hydrodynamics simulations. Astrophys. J. 850, 43 (2017).

    Article  ADS  CAS  Google Scholar 

  4. Burrows, A., Vartanyan, D., Dolence, J. C., Skinner, M. A. & Radice, D. Crucial physical dependencies of the core-collapse supernova mechanism. Space Sci. Rev. 214, 33 (2018).

    Article  ADS  Google Scholar 

  5. Vartanyan, D., Burrows, A., Radice, D., Skinner, M. A. & Dolence, J. Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M. Mon. Not. R. Astron. Soc. 477, 3091–3108 (2018).

    Article  ADS  CAS  Google Scholar 

  6. Vartanyan, D., Burrows, A., Radice, D., Skinner, M. A. & Dolence, J. A successful 3D core-collapse supernova explosion model. Mon. Not. R. Astron. Soc. 482, 351–369 (2019).

    Article  ADS  CAS  Google Scholar 

  7. Burrows, A., Radice, D. & Vartanyan, D. Three-dimensional supernova explosion simulations of 9-, 10-, 11-, 12-, and 13-M stars. Mon. Not. R. Astron. Soc. 485, 3153–3168 (2019).

    Article  ADS  CAS  Google Scholar 

  8. Nagakura, H., Burrows, A., Radice, D. & Vartanyan, D. Towards an understanding of the resolution dependence of core-collapse supernova simulations. Mon. Not. R. Astron. Soc. 490, 4622–4637 (2019).

    Article  ADS  CAS  Google Scholar 

  9. Burrows, A. et al. The overarching framework of core-collapse supernova explosions as revealed by 3D FORNAX simulations. Mon. Not. R. Astron. Soc. 491, 2715–2735 (2020). The largest collection of full-physics 3D simulations published so far, describing the witnessed systematics with progenitor mass and initial core density structure.

    Article  ADS  CAS  Google Scholar 

  10. Nagakura, H., Burrows, A., Radice, D. & Vartanyan, D. A systematic study of proto-neutron star convection in three-dimensional core-collapse supernova simulations. Mon. Not. R. Astron. Soc. 492, 5764–5779 (2020).

    Article  ADS  CAS  Google Scholar 

  11. Skinner, M. A., Dolence, J. C., Burrows, A., Radice, D. & Vartanyan, D. FORNAX: a flexible code for multiphysics astrophysical simulations. Astrophys. J. Suppl. Ser. 241, 7 (2019).

    Article  ADS  CAS  Google Scholar 

  12. Lentz, E. J. et al. Three-dimensional core-collapse supernova simulated using a 15 M progenitor. Astrophys. J. Lett. 807, L31 (2015). A comprehensive study of the hydrodynamics of a 3D core-collapse simulation.

    Article  ADS  CAS  Google Scholar 

  13. Melson, T. et al. Neutrino-driven explosion of a 20 solar-mass star in three dimensions enabled by strange-quark contributions to neutrino–nucleon scattering. Astrophys. J. Lett. 808, L42 (2015).

    Article  ADS  CAS  Google Scholar 

  14. Melson, T., Janka, H.-T. & Marek, A. Neutrino-driven supernova of a low-mass iron-core progenitor boosted by three-dimensional turbulent convection. Astrophys. J. 801, L24 (2015).

    Article  ADS  CAS  Google Scholar 

  15. Janka, H.-T., Melson, T. & Summa, A. Physics of core-collapse supernovae in three dimensions: a sneak preview. Annu. Rev. Nucl. Part. Sci. 66, 341–375 (2016). A useful review of core-collapse systematics, with some insights into the possible effects of rapid rotation.

    Article  ADS  CAS  Google Scholar 

  16. Takiwaki, T., Kotake, K. & Suwa, Y. Three-dimensional simulations of rapidly rotating core-collapse supernovae: finding a neutrino-powered explosion aided by non-axisymmetric flows. Mon. Not. R. Astron. Soc. 461, L112–L116 (2016).

    Article  ADS  CAS  Google Scholar 

  17. Müller, B., Melson, T., Heger, A. & Janka, H.-T. Supernova simulations from a 3D progenitor model – impact of perturbations and evolution of explosion properties. Mon. Not. R. Astron. Soc. 472, 491–513 (2017). An important paper on the potential effects of initial perturbations on supernova explosions.

    Article  ADS  CAS  Google Scholar 

  18. O’Connor, E. P. & Couch, S. M. Exploring fundamentally three-dimensional phenomena in high-fidelity simulations of core-collapse supernovae. Astrophys. J. 865, 81 (2018).

    Article  ADS  CAS  Google Scholar 

  19. Kuroda, T., Kotake, K., Takiwaki, T. & Thielemann, F.-K. A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole. Mon. Not. R. Astron. Soc. 477, L80–L84 (2018). An important study using a fully general-relativistic hydrodynamic and transport approach.

    Article  ADS  CAS  Google Scholar 

  20. Glas, R., Just, O., Janka, H. T. & Obergaulinger, M. Three-dimensional core-collapse supernova simulations with multidimensional neutrino transport compared to the ray-by-ray-plus approximation. Astrophys. J. 873, 45 (2019).

    Article  ADS  CAS  Google Scholar 

  21. Kuroda, T., Arcones, A., Takiwaki, T. & Kotake, K. Magnetorotational explosion of a massive star supported by neutrino heating in general relativistic three-dimensional simulations. Astrophys. J. 896, 102 (2020).

    Article  ADS  CAS  Google Scholar 

  22. Jones, S. et al. Do electron-capture supernovae make neutron stars? First multidimensional hydrodynamic simulations of the oxygen deflagration. Astron. Astrophys. 593, A72 (2016).

    Article  CAS  Google Scholar 

  23. Kirsebom, O. S. et al. Discovery of an exceptionally strong β-decay transition of 20F and implications for the fate of intermediate-mass stars. Phys. Rev. Lett. 123, 262701 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Jones, S. et al. Remnants and ejecta of thermonuclear electron-capture supernovae. Constraining oxygen-neon deflagrations in high-density white dwarfs. Astron. Astrophys. 622, A74 (2019).

    Article  CAS  Google Scholar 

  25. Zha, S., Leung, S.-C., Suzuki, T. & Nomoto, K. Evolution of ONeMg core in super-AGB stars toward electron-capture supernovae: effects of updated electron-capture rate. Astrophys. J. 886, 22 (2019).

    Article  ADS  CAS  Google Scholar 

  26. Burrows, A., Dessart, L., Livne, E., Ott, C. D. & Murphy, J. Simulations of magnetically driven supernova and hypernova explosions in the context of rapid rotation. Astrophys. J. 664, 416–434 (2007). A magneto-radiation-hydrodynamic study of magnetic jet-driven explosions for rapidly rotating cores.

    Article  ADS  CAS  Google Scholar 

  27. Mösta, P. et al. A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature 528, 376–379 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  28. Bethe, H. A. Supernova mechanisms. Rev. Mod. Phys. 62, 801–866 (1990). An early qualitative discussion of the salient aspects of the delayed neutrino-driven explosion mechanism.

    Article  ADS  CAS  Google Scholar 

  29. Woosley, S. & Janka, T. The physics of core-collapse supernovae. Nat. Phys. 1, 147–154 (2005).

    Article  CAS  Google Scholar 

  30. Janka, H.-T. Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407–451 (2012). An important review of general core-collapse supernova physics.

    Article  ADS  CAS  Google Scholar 

  31. Burrows, A. Perspectives on core-collapse supernova theory. Rev. Mod. Phys. 85, 245–261 (2013).

    Article  ADS  CAS  Google Scholar 

  32. Nomoto, K. Evolution of 8–10 solar mass stars toward electron capture supernovae. I – Formation of electron-degenerate O + Ne + Mg cores. Astrophys. J. 277, 791–805 (1984).

    Article  ADS  CAS  Google Scholar 

  33. Kitaura, F. S., Janka, H.-T. & Hillebrandt, W. Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae. Astron. Astrophys. 450, 345–350 (2006).

    Article  ADS  CAS  Google Scholar 

  34. Burrows, A., Hayes, J. & Fryxell, B. A. On the nature of core-collapse supernova explosions. Astrophys. J. 450, 830 (1995). One of the early papers detailing the role of convection and turbulence in the supernova explosion mechanism.

    Article  ADS  CAS  Google Scholar 

  35. Foglizzo, T., Scheck, L. & Janka, H. T. Neutrino-driven convection versus advection in core-collapse supernovae. Astrophys. J. 652, 1436–1450 (2006).

    Article  ADS  Google Scholar 

  36. Chatzopoulos, E., Graziani, C. & Couch, S. M. Characterizing the convective velocity fields in massive stars. Astrophys. J. 795, 92 (2014).

    Article  ADS  CAS  Google Scholar 

  37. Couch, S. M. & Ott, C. D. The role of turbulence in neutrino-driven core-collapse supernova explosions. Astrophys. J. 799, 5 (2015).

    Article  ADS  CAS  Google Scholar 

  38. Müller, B. & Janka, H.-T. Non-radial instabilities and progenitor asphericities in core-collapse supernovae. Mon. Not. R. Astron. Soc. 448, 2141–2174 (2015).

    Article  ADS  CAS  Google Scholar 

  39. Murphy, J. W. & Burrows, A. Criteria for core-collapse supernova explosions by the neutrino mechanism. Astrophys. J. 688, 1159–1175 (2008).

    Article  ADS  Google Scholar 

  40. Müller, B. & Varma, V. A 3D simulation of a neutrino-driven supernova explosion aided by convection and magnetic fields. Mon. Not. R. Astron. Soc. 498, L109–L113 (2020).

    Article  ADS  Google Scholar 

  41. Burrows, A. & Sawyer, R. F. Effects of correlations on neutrino opacities in nuclear matter. Phys. Rev. C 58, 554–571 (1998).

    Article  ADS  CAS  Google Scholar 

  42. Burrows, A. & Sawyer, R. F. Many-body corrections to charged-current neutrino absorption rates in nuclear matter. Phys. Rev. C 59, 510–514 (1999).

    Article  ADS  CAS  Google Scholar 

  43. Reddy, S., Prakash, M., Lattimer, J. M. & Pons, J. A. Effects of strong and electromagnetic correlations on neutrino interactions in dense matter. Phys. Rev. C 59, 2888–2918 (1999).

    Article  ADS  CAS  Google Scholar 

  44. Burrows, A., Reddy, S. & Thompson, T. A. Neutrino opacities in nuclear matter. Nucl. Phys. A 777, 356–394 (2006).

    Article  ADS  CAS  Google Scholar 

  45. Roberts, L. F., Reddy, S. & Shen, G. Medium modification of the charged-current neutrino opacity and its implications. Phys. Rev. C 86, 065803 (2012).

    Article  ADS  CAS  Google Scholar 

  46. Fischer, T. et al. Neutrino signal from proto-neutron star evolution: effects of opacities from charged-current–neutrino interactions and inverse neutron decay. Phys. Rev. C 101, 025804 (2020).

    Article  ADS  CAS  Google Scholar 

  47. Roberts, L. F. & Reddy, S. Charged current neutrino interactions in hot and dense matter. Phys. Rev. C 95, 045807 (2017).

    Article  ADS  Google Scholar 

  48. Horowitz, C. J., Caballero, O. L., Lin, Z., O’Connor, E. & Schwenk, A. Neutrino–nucleon scattering in supernova matter from the virial expansion. Phys. Rev. C 95, 025801 (2017).

    Article  ADS  Google Scholar 

  49. Langanke, K. et al. Electron capture rates on nuclei and implications for stellar core collapse. Phys. Rev. Lett. 90, 241102 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Juodagalvis, A., Langanke, K., Hix, W. R., Martínez-Pinedo, G. & Sampaio, J. M. Improved estimate of electron capture rates on nuclei during stellar core collapse. Nucl. Phys. A 848, 454–478 (2010).

    Article  ADS  CAS  Google Scholar 

  51. Lentz, E. J., Mezzacappa, A., Messer, O. E. B., Hix, W. R. & Bruenn, S. W. Interplay of neutrino opacities in core-collapse supernova simulations. Astrophys. J. 760, 94 (2012).

    Article  ADS  CAS  Google Scholar 

  52. Mezzacappa, A. & Bruenn, S. W. Stellar core collapse: a Boltzmann treatment of neutrino–electron scattering. Astrophys. J. 410, 740 (1993).

    Article  ADS  CAS  Google Scholar 

  53. Bruenn, S. W. et al. CHIMERA: a massively parallel code for core-collapse supernova simulations. Astrophys. J. Suppl. Ser. 248, 11 (2020).

    Article  ADS  Google Scholar 

  54. Dolence, J. C., Burrows, A., Murphy, J. W. & Nordhaus, J. Dimensional dependence of the hydrodynamics of core-collapse supernovae. Astrophys. J. 765, 110 (2013).

    Article  ADS  CAS  Google Scholar 

  55. Vartanyan, D., Burrows, A. & Radice, D. Temporal and angular variations of 3D core-collapse supernova emissions and their physical correlations. Mon. Not. R. Astron. Soc. 489, 2227–2246 (2019).

    Article  ADS  CAS  Google Scholar 

  56. Couch, S. M., Chatzopoulos, E., Arnett, W. D. & Timmes, F. X. The three-dimensional evolution to core collapse of a massive star. Astrophys. J. 808, L21 (2015). A benchmark study of 3D stellar evolution just prior to core collapse.

    Article  ADS  CAS  Google Scholar 

  57. Chatzopoulos, E., Couch, S. M., Arnett, W. D. & Timmes, F. X. Convective properties of rotating two-dimensional core-collapse supernova progenitors. Astrophys. J. 822, 61 (2016).

    Article  ADS  Google Scholar 

  58. Müller, B. et al. Three-dimensional simulations of neutrino-driven core-collapse supernovae from low-mass single and binary star progenitors. Mon. Not. R. Astron. Soc. 484, 3307–3324 (2019).

    Article  ADS  CAS  Google Scholar 

  59. Keil, W., Janka, H.-T. & Mueller, E. Ledoux convection in protoneutron stars—a clue to supernova nucleosynthesis? Astrophys. J. 473, L111 (1996).

    Article  ADS  CAS  Google Scholar 

  60. Dessart, L., Burrows, A., Livne, E. & Ott, C. D. Multidimensional radiation/hydrodynamic simulations of proto-neutron star convection. Astrophys. J. 645, 534–550 (2006).

    Article  ADS  Google Scholar 

  61. Sukhbold, T., Woosley, S. E. & Heger, A. A high-resolution study of presupernova core structure. Astrophys. J. 860, 93 (2018). An important source of 1D massive star progenitor models using a state-of-the-art stellar evolution code.

    Article  ADS  CAS  Google Scholar 

  62. O’Connor, E. & Ott, C. D. Black hole formation in failing core-collapse supernovae. Astrophys. J. 730, 70 (2011).

    Article  ADS  CAS  Google Scholar 

  63. Ebinger, K. et al. PUSHing core-collapse supernovae to explosions in spherical symmetry. IV. Explodability, remnant properties, and nucleosynthesis yields of low-metallicity stars. Astrophys. J. 888, 91 (2020).

    Article  ADS  CAS  Google Scholar 

  64. Müller, B. The dynamics of neutrino-driven supernova explosions after shock revival in 2D and 3D. Mon. Not. R. Astron. Soc. 453, 287–310 (2015).

    Article  ADS  CAS  Google Scholar 

  65. Hanke, F., Marek, A., Müller, B. & Janka, H.-T. Is strong SASI activity the key to successful neutrino-driven supernova explosions? Astrophys. J. 755, 138 (2012).

    Article  ADS  Google Scholar 

  66. Hanke, F., Müller, B., Wongwathanarat, A., Marek, A. & Janka, H.-T. SASI activity in three-dimensional neutrino-hydrodynamics simulations of supernova cores. Astrophys. J. 770, 66 (2013).

    Article  ADS  CAS  Google Scholar 

  67. Couch, S. M. On the impact of three dimensions in simulations of neutrino-driven core-collapse supernova explosions. Astrophys. J. 775, 35 (2013).

    Article  ADS  CAS  Google Scholar 

  68. Summa, A. et al. Progenitor-dependent explosion dynamics in self-consistent, axisymmetric simulations of neutrino-driven core-collapse supernovae. Astrophys. J. 825, 6 (2016).

    Article  ADS  Google Scholar 

  69. Summa, A., Janka, H.-T., Melson, T. & Marek, A. Rotation-supported neutrino-driven supernova explosions in three dimensions and the critical luminosity condition. Astrophys. J. 852, 28 (2018).

    Article  ADS  CAS  Google Scholar 

  70. Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M. & Janka, H.-T. Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. Astrophys. J. 821, 38 (2016).

    Article  ADS  Google Scholar 

  71. Ertl, T., Woosley, S. E., Sukhbold, T. & Janka, H. T. The explosion of helium stars evolved with mass loss. Astrophys. J. 890, 51 (2020).

    Article  ADS  CAS  Google Scholar 

  72. Özel, F., Psaltis, D., Narayan, R. & Santos Villarreal, A. On the mass distribution and birth masses of neutron stars. Astrophys. J. 757, 55 (2012).

    Article  ADS  Google Scholar 

  73. Pruet, J., Hoffman, R. D., Woosley, S. E., Janka, H. T. & Buras, R. Nucleosynthesis in early supernova winds. II. The role of neutrinos. Astrophys. J. 644, 1028–1039 (2006).

    Article  ADS  CAS  Google Scholar 

  74. Fröhlich, C. et al. Neutrino-induced nucleosynthesis of A > 64 nuclei: the νp process. Phys. Rev. Lett. 96, 142502 (2006).

    Article  ADS  PubMed  CAS  Google Scholar 

  75. Fischer, T., Whitehouse, S. C., Mezzacappa, A., Thielemann, F.-K. & Liebendörfer, M. Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations. Astron. Astrophys. 517, A80 (2010).

    Article  MATH  CAS  Google Scholar 

  76. Thielemann, F.-K., Hashimoto, M.-A. & Nomoto, K. Explosive nucleosynthesis in SN 1987A. II. Composition, radioactivities, and the neutron star mass. Astrophys. J. 349, 222 (1990).

    Article  ADS  CAS  Google Scholar 

  77. Tamborra, I. et al. Self-sustained asymmetry of lepton-number emission: a new phenomenon during the supernova shock-accretion phase in three dimensions. Astrophys. J. 792, 96 (2014).

    Article  ADS  Google Scholar 

  78. Glas, R., Janka, H. T., Melson, T., Stockinger, G. & Just, O. Effects of LESA in three-dimensional supernova simulations with multidimensional and ray-by-ray-plus neutrino transport. Astrophys. J. 881, 36 (2019).

    Article  ADS  CAS  Google Scholar 

  79. Arzoumanian, Z., Chernoff, D. F. & Cordes, J. M. The velocity distribution of isolated radio pulsars. Astrophys. J. 568, 289–301 (2002).

    Article  ADS  Google Scholar 

  80. Faucher-Giguère, C.-A. & Kaspi, V. M. Birth and evolution of isolated radio pulsars. Astrophys. J. 643, 332–355 (2006).

    Article  ADS  Google Scholar 

  81. Cordes, J. M., Romani, R. W. & Lundgren, S. C. The Guitar nebula: a bow shock from a slow-spin, high-velocity neutron star. Nature 362, 133–135 (1993).

    Article  ADS  Google Scholar 

  82. Burrows, A. & Hayes, J. Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion. Phys. Rev. Lett. 76, 352–355 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Scheck, L., Plewa, T., Janka, H. T., Kifonidis, K. & Müller, E. Pulsar recoil by large-scale anisotropies in supernova explosions. Phys. Rev. Lett. 92, 011103 (2004). A summary of general theory and results concerning the recoil mechanism of pulsar kick speeds.

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Scheck, L., Kifonidis, K., Janka, H. T. & Müller, E. Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions. Astron. Astrophys. 457, 963–986 (2006).

    Article  ADS  Google Scholar 

  85. Wongwathanarat, A., Janka, H.-T. & Müller, E. Hydrodynamical neutron star kicks in three dimensions. Astrophys. J. 725, L106–L110 (2010).

    Article  ADS  Google Scholar 

  86. Nordhaus, J., Brandt, T. D., Burrows, A. & Almgren, A. The hydrodynamic origin of neutron star kicks. Mon. Not. R. Astron. Soc. 423, 1805–1812 (2012).

    Article  ADS  Google Scholar 

  87. Wongwathanarat, A., Janka, H. T. & Müller, E. Three-dimensional neutrino-driven supernovae: neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products. Astron. Astrophys. 552, A126 (2013).

    Article  ADS  CAS  Google Scholar 

  88. Nakamura, K., Takiwaki, T. & Kotake, K. Long-term simulations of multi-dimensional core-collapse supernovae: implications for neutron star kicks. Publ. Astron. Soc. Jpn. 71, 98 (2019).

    Article  ADS  CAS  Google Scholar 

  89. Burrows, A., Livne, E., Dessart, L., Ott, C. D. & Murphy, J. Features of the acoustic mechanism of core-collapse supernova explosions. Astrophys. J. 655, 416–433 (2007).

    Article  ADS  CAS  Google Scholar 

  90. Burrows, A. The birth of neutron stars and black holes. Phys. Today 40, 28–37 (1987).

    Article  CAS  Google Scholar 

  91. Timmes, F. X., Woosley, S. E. & Weaver, T. A. The neutron star and black hole initial mass function. Astrophys. J. 457, 834 (1996).

    Article  ADS  CAS  Google Scholar 

  92. Chan, C., Müller, B., Heger, A., Pakmor, R. & Springel, V. Black hole formation and fallback during the supernova explosion of a 40 M star. Astrophys. J. Lett. 852, 19 (2018).

    Article  ADS  CAS  Google Scholar 

  93. Woosley, S., Sukhbold, T. & Janka, H. T. The birth function for black holes and neutron stars in close binaries. Astrophys. J. 896, 56 (2020).

    Article  ADS  CAS  Google Scholar 

  94. Farr, W. M. et al. The mass distribution of stellar-mass black holes. Astrophys. J. 741, 103 (2011).

    Article  ADS  Google Scholar 

  95. Seadrow, S., Burrows, A., Vartanyan, D., Radice, D. & Skinner, M. A. Neutrino signals of core-collapse supernovae in underground detectors. Mon. Not. R. Astron. Soc. 480, 4710–4731 (2018).

    Article  ADS  CAS  Google Scholar 

  96. Cerdá-Durán, P., DeBrye, N., Aloy, M. A., Font, J. A. & Obergaulinger, M. Gravitational wave signatures in black hole forming core collapse. Astrophys. J. 779, L18 (2013).

    Article  ADS  CAS  Google Scholar 

  97. Burrows, A. Speculations on the fizzled collapse of a massive star. Astrophys. J. 300, 488 (1986).

    Article  ADS  CAS  Google Scholar 

  98. Nadyozhin, D. K. Some secondary indications of gravitational collapse. Astrophys. Space Sci. 69, 115–125 (1980).

    Article  ADS  Google Scholar 

  99. Lovegrove, E. & Woosley, S. E. Very low energy supernovae from neutrino mass loss. Astrophys. J. 769, 109 (2013).

    Article  ADS  CAS  Google Scholar 

  100. Blondin, J. M. & Mezzacappa, A. Pulsar spins from an instability in the accretion shock of supernovae. Nature 445, 58–60 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  101. Rantsiou, E., Burrows, A., Nordhaus, J. & Almgren, A. Induced rotation in three-dimensional simulations of core-collapse supernovae: implications for pulsar spins. Astrophys. J. 732, 57 (2011).

    Article  ADS  Google Scholar 

  102. Stockinger, G. et al. Three-dimensional models of core-collapse supernovae from low-mass progenitors with implications for Crab. Mon. Not. R. Astron. Soc. 496, 2039–2084 (2020).

    Article  ADS  CAS  Google Scholar 

  103. Morozova, V., Piro, A. L. & Valenti, S. Measuring the progenitor masses and dense circumstellar material of Type II supernovae. Astrophys. J. 858, 15 (2018).

    Article  ADS  CAS  Google Scholar 

  104. Martinez, L. & Bersten, M. C. Mass discrepancy analysis for a select sample of Type II-plateau supernovae. Astron. Astrophys. 629, A124 (2019).

    Article  ADS  CAS  Google Scholar 

  105. Pumo, M. L. & Zampieri, L. Radiation-hydrodynamical modeling of core-collapse supernovae: light curves and the evolution of photospheric velocity and temperature. Astrophys. J. 741, 41 (2011).

    Article  ADS  CAS  Google Scholar 

  106. Pumo, M. L. et al. Radiation-hydrodynamical modelling of underluminous Type II plateau supernovae. Mon. Not. R. Astron. Soc. 464, 3013–3020 (2017).

    Article  ADS  CAS  Google Scholar 

  107. Utrobin, V. P. Nonthermal ionization and excitation in Type IIb supernova 1993J. Astron. Astrophys. 306, 219 (1996).

    ADS  CAS  Google Scholar 

  108. Utrobin, V. P. & Chugai, N. N. Type IIP supernova 2008in: the explosion of a normal red supergiant. Astron. Astrophys. 555, A145 (2013).

    Article  ADS  CAS  Google Scholar 

  109. Utrobin, V. P. & Chugai, N. N. Luminous Type IIP SN 2013ej with high-velocity 56Ni ejecta. Mon. Not. R. Astron. Soc. 472, 5004–5010 (2017).

    Article  ADS  CAS  Google Scholar 

  110. Utrobin, V. P. & Chugai, N. N. Resolving the puzzle of type IIP SN 2016X. Mon. Not. R. Astron. Soc. 490, 2042–2049 (2019).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Insley and S. Rizzi of the Argonne National Laboratory and the Argonne Leadership Computing Facility (ALCF) for considerable support with the 3D graphics. We also acknowledge ongoing collaborations with H. Nagakura, D. Radice, J. Dolence, A. Skinner and M. Coleman. We acknowledge E. O’Connor regarding the equation of state, G. Martínez-Pinedo concerning electron capture on heavy nuclei, T. Sukhbold and S. Woosley for providing details concerning the initial models, and T. Thompson and T. Wang regarding inelastic scattering. Funding was provided by the US Department of Energy (DOE) Office of Science and the Office of Advanced Scientific Computing Research via the Scientific Discovery through Advanced Computing (SciDAC4) programme and Grant DE-SC0018297 (subaward 00009650) and by the US NSF under grants AST-1714267 and PHY-1804048 (the latter via the Max-Planck/Princeton Center (MPPC) for Plasma Physics). Awards of computer time were provided by the INCITE programme using resources of the ALCF, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357, under a Blue Waters sustained-petascale computing project, supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois, under a PRAC allocation from the National Science Foundation (#OAC-1809073), and under award #TG-AST170045 to the resource Stampede2 in the Extreme Science and Engineering Discovery Environment (XSEDE, ACI-1548562). Finally, we employed computational resources provided by the TIGRESS high-performance computer centre at Princeton University, which is jointly supported by the Princeton Institute for Computational Science and Engineering (PICSciE) and the Princeton University Office of Information Technology, and acknowledge their continuing allocation at the National Energy Research Scientific Computing Center (NERSC), supported by the DOE Office of Science under contract DE-AC03-76SF00098.

Author information

Authors and Affiliations

Authors

Contributions

A.B. organized the paper and wrote most of it. D.V. conducted the 2D calculations. Otherwise, the authors contributed equally to the document.

Corresponding author

Correspondence to A. Burrows.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Friedrich-Karl Thielemann and Stan Woosley for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burrows, A., Vartanyan, D. Core-collapse supernova explosion theory. Nature 589, 29–39 (2021). https://doi.org/10.1038/s41586-020-03059-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-03059-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing