Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transcription factors and 3D genome conformation in cell-fate decisions

Abstract

How cells adopt different identities has long fascinated biologists. Signal transduction in response to environmental cues results in the activation of transcription factors that determine the gene-expression program characteristic of each cell type. Technological advances in the study of 3D chromatin folding are bringing the role of genome conformation in transcriptional regulation to the fore. Characterizing this role of genome architecture has profound implications, not only for differentiation and development but also for diseases including developmental malformations and cancer. Here we review recent studies indicating that the interplay between transcription and genome conformation is a driving force for cell-fate decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell identity as a transcription-factor-driven emergent property.
Fig. 2: Three-dimensional folding principles of chromatin.
Fig. 3: Compartmentalization and loop extrusion shape genome conformation.
Fig. 4: Scenarios and examples of how genome conformation helps to shape cell identity.

Similar content being viewed by others

References

  1. Davidson, E. H. Emerging properties of animal gene regulatory networks. Nature 468, 911–920 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A. & Luscombe, N. M. A census of human transcription factors: function, expression and evolution. Nat. Rev. Genet. 10, 252–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Laat, W. & Duboule, D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502, 499–506 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  6. Zaret, K. S. & Mango, S. E. Pioneer transcription factors, chromatin dynamics, and cell fate control. Curr. Opin. Genet. Dev. 37, 76–81 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Spitz, F. & Furlong, E. E. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613–626 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Voss, T. C. & Hager, G. L. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat. Rev. Genet. 15, 69–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Novikoff, A. B. The concept of integrative levels and biology. Science 101, 209–215 (1945).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Denker, A. & de Laat, W. The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev. 30, 1357–1382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yadav, T., Quivy, J. P. & Almouzni, G. Chromatin plasticity: a versatile landscape that underlies cell fate and identity. Science 361, 1332–1336 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Bronshtein, I. et al. Exploring chromatin organization mechanisms through its dynamic properties. Nucleus 7, 27–33 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Branco, M. R. & Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 4, e138 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus Cell 174, 744–757 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Apostolou, E. & Thanos, D. Virus infection induces NF-κB-dependent interchromosomal associations mediating monoallelic IFNβ gene expression. Cell 134, 85–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Monahan, K., Horta, A. & Lomvardas, S. LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature 565, 448–453 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schoenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 42, 53–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Yusufzai, T. M., Tagami, H., Nakatani, Y. & Felsenfeld, G. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell 13, 291–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Brown, K. E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91, 845–854 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009). A landmark paper reporting the development of the widely used Hi-C technology and describing the division of the human genome into two topological compartments, A and B.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wijchers, P. J. et al. Characterization and dynamics of pericentromere-associated domains in mice. Genome Res. 25, 958–969 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vieux-Rochas, M., Fabre, P. J., Leleu, M., Duboule, D. & Noordermeer, D. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc. Natl Acad. Sci. USA 112, 4672–4677 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Steensel, B. & Belmont, A. S. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780–791 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Therizols, P. et al. Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science 346, 1238–1242 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wijchers, P. J. et al. Cause and consequence of tethering a subTAD to different nuclear compartments. Mol. Cell 61, 461–473 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harr, J. C. et al. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J. Cell Biol. 208, 33–52 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stadhouders, R. et al. Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat. Genet. 50, 238–249 (2018). The first study to describe the dynamics of mammalian genome conformation as somatic cells reprogram into pluripotent cells, during which a substantial number of loci, including those of key pluripotency factors, undergo topological changes in advance of transcriptional changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maeshima, K., Ide, S., Hibino, K. & Sasai, M. Liquid-like behavior of chromatin. Curr. Opin. Genet. Dev. 37, 36–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome Cell 175, 1481–1491 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555 (2018). Together with ref. 39, this paper implicates transcription factors as direct mediators of phase separation.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. de Wit, E. et al. The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature 501, 227–231 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  42. Liu, Z. et al. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. eLife 3, e04236 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bantignies, F. et al. Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144, 214–226 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833–840 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Schoenfelder, S. et al. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat. Genet. 47, 1179–1186 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012). Together with refs. 51,52, this study reports the existence of topologically associating domains as a principle of 3D genome organization.

    Article  CAS  PubMed  Google Scholar 

  54. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014). An improved Hi-C protocol for high-resolution analysis that allows identification of chromatin loops and further refines A–B compartment segmentation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vietri Rudan, M. et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Reports 10, 1297–1309 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Reports 15, 2038–2049 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Alipour, E. & Marko, J. F. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 40, 11202–11212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N. & Mirny, L. A. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl Acad. Sci. USA 115, E6697–E6706 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ulianov, S. V. et al. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res. 26, 70–84 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rowley, M. J. et al. Evolutionarily conserved principles predict 3D chromatin organization Mol. Cell 67, 837–852 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rada-Iglesias, A., Grosveld, F. G. & Papantonis, A. Forces driving the three-dimensional folding of eukaryotic genomes. Mol. Syst. Biol. 14, e8214 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization Cell 169, 930–944 (2017).Degron-mediated CTCF depletion in embryonic stem cells is used to show that the factor is essential for creating and maintaining TAD borders but not A–B compartments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, 3573–3599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wei, Z. et al. Klf4 organizes long-range chromosomal interactions with the Oct4 locus in reprogramming and pluripotency. Cell Stem Cell 13, 36–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Abboud, N. et al. A cohesin–OCT4 complex mediates Sox enhancers to prime an early embryonic lineage. Nat. Commun. 6, 6749 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  68. Hug, C. B., Grimaldi, A. G., Kruse, K. & Vaquerizas, J. M. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169, 216–228 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Brackley, C. A., Johnson, J., Kelly, S., Cook, P. R. & Marenduzzo, D. Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains. Nucleic Acids Res. 44, 3503–3512 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dowen, J. M. et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159, 374–387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schoenfelder, S. et al. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res. 25, 582–597 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sun, F. et al. Promoter–enhancer communication occurs primarily within insulated neighborhoods. Mol. Cell 73, 250–263 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Lupiáñez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015).The first study that convincingly links disruption of TAD structure to transcriptional deregulation as well as mouse and human limb malformations.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454–1458 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Le Dily, F. et al. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev. 28, 2151–2162 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Andrey, G. & Mundlos, S. The three-dimensional genome: regulating gene expression during pluripotency and development. Development 144, 3646–3658 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012). The first conclusive evidence that forcing enhancer–promoter interactions is sufficient to alter gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weintraub, A. S. et al. YY1 is a structural regulator of enhancer–promoter loops. Cell 171, 1573–1588 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu, Z. & Tjian, R. Visualizing transcription factor dynamics in living cells. J. Cell Biol. 217, 1181–1191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Papantonis, A. & Cook, P. R. Transcription factories: genome organization and gene regulation. Chem. Rev. 113, 8683–8705 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Gu, B. et al. Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359, 1050–1055 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fraser, J., Williamson, I., Bickmore, W. A. & Dostie, J. An overview of genome organization and how we got there: from FISH to Hi-C. Microbiol. Mol. Biol. Rev. 79, 347–372 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38, 603–613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hu, G. et al. Transformation of accessible chromatin and 3D nucleome underlies lineage commitment of early T cells. Immunity 48, 227–242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Krijger, P. H. et al. Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming. Cell Stem Cell 18, 597–610 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pekowska, A. et al. Gain of CTCF-anchored chromatin loops marks the exit from naive pluripotency. Cell Syst. 7, 482–495 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kieffer-Kwon, K. R. et al. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell 155, 1507–1520 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, Y. et al. Chromatin connectivity maps reveal dynamic promoter–enhancer long-range associations. Nature 504, 306–310 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tan, L., Xing, D., Chang, C. H., Li, H. & Xie, X. S. Three-dimensional genome structures of single diploid human cells. Science 361, 924–928 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ulianov, S. V., Tachibana-Konwalski, K. & Razin, S. V. Single-cell Hi-C bridges microscopy and genome-wide sequencing approaches to study 3D chromatin organization. BioEssays 39, 1700104 (2017).

  97. Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018). Super-resolution imaging is used to show that TADs exist in single cells with variable boundaries, and cohesin is shown to specifically control preferential boundary positioning.

    Article  ADS  PubMed  CAS  PubMed Central  Google Scholar 

  100. Hansen, A. S., Cattoglio, C., Darzacq, X. & Tjian, R. Recent evidence that TADs and chromatin loops are dynamic structures. Nucleus 9, 20–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Johanson, T. M. et al. Transcription-factor-mediated supervision of global genome architecture maintains B cell identity. Nat. Immunol. 19, 1257–1264 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Chen, H. et al. Dynamic interplay between enhancer-promoter topology and gene activity. Nat. Genet. 50, 1296–1303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Andrey, G. et al. A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science 340, 1234167 (2013).

    Article  PubMed  CAS  Google Scholar 

  105. Symmons, O. et al. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 24, 390–400 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, H. et al. Visualizing long-term single-molecule dynamics in vivo by stochastic protein labeling. Proc. Natl Acad. Sci. USA 115, 343–348 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676–684 (2015).

    Article  PubMed  CAS  Google Scholar 

  108. Guo, Y. et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900–910 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Narendra, V. et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347, 1017–1021 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Krijger, P. H. & de Laat, W. Regulation of disease-associated gene expression in the 3D genome. Nat. Rev. Mol. Cell Biol. 17, 771–782 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Sun, J. H. et al. Disease-associated short tandem repeats co-localize with chromatin domain boundaries. Cell 175, 224–238 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017). In vivo depletion of the cohesin loading factor Nipbl leads to genome-wide loss of TAD organization, whereas A–B compartmentalization is strengthened, suggesting that TAD formation and compartmentalization are separate antagonistic processes.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  113. Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707 (2017). Dissection of the functional role of cohesin loading and release factors in chromatin loop formation and their size.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cuartero, S. et al. Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nat. Immunol. 19, 932–941 (2018). Demonstration that the induction of inflammatory response genes in haematopoietic cells is highly dependent on cohesin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Krijger, P. H. & de Laat, W. Identical cells with different 3D genomes; cause and consequences? Curr. Opin. Genet. Dev. 23, 191–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Ghavi-Helm, Y. et al. Enhancer loops appear stable during development and are associated with paused polymerase. Nature 512, 96–100 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  119. Jin, F. et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503, 290–294 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li, L. et al. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Mol. Cell 58, 216–231 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Palstra, R. J. et al. Maintenance of long-range DNA interactions after inhibition of ongoing RNA polymerase II transcription. PLoS ONE 3, e1661 (2008).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  122. Mitchell, J. A. & Fraser, P. Transcription factories are nuclear subcompartments that remain in the absence of transcription. Genes Dev. 22, 20–25 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Apostolou, E. et al. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell 12, 699–712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Oudelaar, A. M. et al. Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains. Nat. Genet. 50, 1744–1751 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Allahyar, A. et al. Enhancer hubs and loop collisions identified from single-allele topologies. Nat. Genet. 50, 1151–1160 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Denholtz, M. et al. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13, 602–616 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Corrales, M. et al. Clustering of Drosophila housekeeping promoters facilitates their expression. Genome Res. 27, 1153–1161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Stadhouders, R. et al. Control of developmentally primed erythroid genes by combinatorial co-repressor actions. Nat. Commun. 6, 8893 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  130. Cruz-Molina, S. et al. PRC2 facilitates the regulatory topology required for poised enhancer function during pluripotent stem cell differentiation. Cell Stem Cell 20, 689–705 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Mas, G. et al. Promoter bivalency favors an open chromatin architecture in embryonic stem cells. Nat. Genet. 50, 1452–1462 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Zirkel, A. et al. HMGB2 loss upon senescence entry disrupts genomic organization and induces CTCF clustering across cell types. Mol. Cell 70, 730–744 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Beagan, J. A. et al. Local genome topology can exhibit an incompletely rewired 3D-folding state during somatic cell reprogramming. Cell Stem Cell 18, 611–624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ribeiro de Almeida, C., Hendriks, R. W. & Stadhouders, R. Dynamic control of long-range genomic interactions at the immunoglobulin κ light-chain locus. Adv. Immunol. 128, 183–271 (2015).

    Article  PubMed  CAS  Google Scholar 

  135. Kosak, S. T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  136. Jhunjhunwala, S. et al. The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell 133, 265–279 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Guo, C. et al. CTCF-binding elements mediate control of V(D)J recombination. Nature 477, 424–430 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ribeiro de Almeida, C. et al. The DNA-binding protein CTCF limits proximal Vκ recombination and restricts κ enhancer interactions to the immunoglobulin κ light chain locus. Immunity 35, 501–513 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Stadhouders, R. et al. Pre-B cell receptor signaling induces immunoglobulin κ locus accessibility by functional redistribution of enhancer-mediated chromatin interactions. PLoS Biol. 12, e1001791 (2014). A report showing that signal-responsive transcription factors during B cell development can induce a functional redistribution of existing 3D enhancer–promoter interactions, a phenomenon called enhancer focusing.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Noordermeer, D. et al. Variegated gene expression caused by cell-specific long-range DNA interactions. Nat. Cell Biol. 13, 944–951 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gröschel, S. et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157, 369–381 (2014). A study showing that disrupted TAD organization can have major consequences for cancer development: chromosomal abnormalities enable a GATA2 enhancer to ectopically activate the EVI1 oncogene while silencing GATA2, together resulting in cellular transformation.

    Article  PubMed  CAS  Google Scholar 

  143. Laurenti, E. & Göttgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418–426 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang, H. et al. CRISPR-mediated programmable 3D genome positioning and nuclear organization. Cell 175, 1405–1417 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Barrington, C., Finn, R. & Hadjur, S. Cohesin biology meets the loop extrusion model. Chromosome Res. 25, 51–60 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ke, Y. et al. Chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis Cell 170, 367–381 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Du, Z. et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232–235 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  148. Gassler, J. et al. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J. 36, 3600–3618 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jung, Y. H. et al. Chromatin states in mouse sperm correlate with embryonic and adult regulatory landscapes. Cell Reports 18, 1366–1382 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Kaaij, L. J. T., van der Weide, R. H., Ketting, R. F. & de Wit, E. Systemic loss and gain of chromatin architecture throughout zebrafish development. Cell Reports 24, 1–10 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to the authors of many relevant studies for not citing their work owing to space limitations. We thank members of the Stadhouders, Filion and Graf laboratories for helpful discussions. G.F. and T.G. are supported by the European Research Council under the 7th Framework Programme FP7/2007-2013 (ERC Synergy Grant 4D-Genome, grant agreement 609989). R.S. is supported by the Netherlands Organization for Scientific Research (VENI 91617114) and an Erasmus MC Fellowship.

Reviewer information

Nature thanks Peter Fraser, Konrad Hochedlinger and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

R.S. and T.G. conceived and wrote the manuscript with essential input from G.J.F. Figures were prepared by R.S.

Corresponding authors

Correspondence to Ralph Stadhouders or Thomas Graf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadhouders, R., Filion, G.J. & Graf, T. Transcription factors and 3D genome conformation in cell-fate decisions. Nature 569, 345–354 (2019). https://doi.org/10.1038/s41586-019-1182-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-1182-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing