Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Subwavelength integrated photonics

Abstract

In the late nineteenth century, Heinrich Hertz demonstrated that the electromagnetic properties of materials are intimately related to their structure at the subwavelength scale by using wire grids with centimetre spacing to manipulate metre-long radio waves. More recently, the availability of nanometre-scale fabrication techniques has inspired scientists to investigate subwavelength-structured metamaterials with engineered optical properties at much shorter wavelengths, in the infrared and visible regions of the spectrum. Here we review how optical metamaterials are expected to enhance the performance of the next generation of integrated photonic devices, and explore some of the challenges encountered in the transition from concept demonstration to viable technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light propagation through a periodic dielectric structure.
Fig. 2: Light propagation in a silicon waveguide with an SWG core.
Fig. 3: Subwavelength engineered waveguide devices for fibre-to-chip coupling, beam splitting and polarization splitting.
Fig. 4: A roadmap for integrated SWG metamaterial devices and systems.

Similar content being viewed by others

References

  1. Rytov, S. M. Electromagnetic properties of a finely stratified medium. Sov. Phys. JETP 2, 466–475 (1956).

    MathSciNet  MATH  Google Scholar 

  2. Mait, J. N. & Prather, D. W. (eds) Selected Papers on Subwavelength Diffractive Optics (SPIE Optical Engineering Press, Bellingham, 2001).

    Google Scholar 

  3. Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16, 1143–1156 (1999).

    Article  ADS  Google Scholar 

  4. Bloembergen, N. & Sievers, A. J. Nonlinear optical properties of periodic laminar structures. Appl. Phys. Lett. 17, 483–486 (1970).

    Article  ADS  CAS  Google Scholar 

  5. van der Ziel, J. P. Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers. Appl. Phys. Lett. 26, 60–61 (1975).

    Article  ADS  Google Scholar 

  6. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Walser, R. M. Electromagnetic metamaterials. Proc. SPIE 4467, https://doi.org/10.1117/12.432921 (2001).

  9. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Pendry, J. B. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  11. Fedotov, V. A., Schwanecke, A. S., Zheludev, N. I., Khardikov, V. V. & Prosvirnin, S. L. Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures. Nano Lett. 7, 1996–1999 (2007).

    Article  ADS  CAS  Google Scholar 

  12. Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Urbas, A. M. et al. Roadmap on optical metamaterials. J. Opt. 18, 093005 (2016).

    Article  ADS  CAS  Google Scholar 

  14. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Zhu, A. Y., Kuznetsov, A. I., Luk’yanchuk, B., Engheta, N. & Genevet, P. Traditional and emerging materials for optical metasurfaces. Nanophotonics 6, 452–471 (2017).

    Article  CAS  Google Scholar 

  16. Lalanne, P. & Chavel, P. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11, 1600295 (2017).

    Article  ADS  CAS  Google Scholar 

  17. Staude, I. & Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photon. 11, 274–284 (2017).

    Article  ADS  CAS  Google Scholar 

  18. Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Zheludev, N. I. Obtaining optical properties on demand. Science 348, 973–974 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Zheludev, N. I. & Plum, E. Reconfigurable nanomechanical photonic metamaterials. Nat. Nanotechnol. 11, 16–22 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Genevet, P. & Capasso, F. Holographic optical metasurfaces: a review of current progress. Rep. Prog. Phys. 78, 024401 (2015).

    Article  ADS  PubMed  Google Scholar 

  22. Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Vivien, L. & Pavesi, L. (eds) Handbook of Silicon Photonics (CRC Press, Boca Raton, 2013).

    Book  Google Scholar 

  24. Cheben, P., Xu, D.-X., Janz, S. & Densmore, A. Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. Opt. Express 14, 4695–4702 (2006). This paper proposed SWG metamaterial structures for silicon-strip waveguides.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Schmid, J. H. et al. Gradient-index antireflective subwavelength structures for planar waveguide facets. Opt. Lett. 32, 1794–1796 (2007). This study demonstrated SWG structures in a silicon-on-insulator rib waveguide.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Bock, P. J. et al. Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. Opt. Express 18, 20251 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Halir, R. et al. Waveguide sub-wavelength structures: a review of principles and applications. Laser Photonics Rev. 9, 25–49 (2015).

    Article  ADS  CAS  Google Scholar 

  28. Cheben, P. et al. Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers. Opt. Lett. 35, 2526–2528 (2010). This study demonstrated refractive-index-engineered SWG silicon waveguide devices.

    Article  ADS  PubMed  Google Scholar 

  29. Bock, P. J. et al. Subwavelength grating crossings for silicon wire waveguides. Opt. Express 18, 16146–16155 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Levy, U. et al. Inhomogeneous dielectric metamaterials with space-variant polarizability. Phys. Rev. Lett. 98, 243901 (2007). This paper reported on refractive-index engineering with SWG structures in slab waveguides.

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Valentine, J., Li, J., Zentgraf, T., Bartal, G. & Zhang, X. An optical cloak made of dielectrics. Nat. Mater. 8, 568–571 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Hunt, J. et al. Planar, flattened Luneburg lens at infrared wavelengths. Opt. Express 20, 1706 (2012).

    Article  ADS  PubMed  Google Scholar 

  33. Gabrielli, L. H. & Lipson, M. Transformation optics on a silicon platform. J. Opt. 13, 024010 (2011).

    Article  ADS  CAS  Google Scholar 

  34. Zentgraf, T., Valentine, J., Tapia, N., Li, J. & Zhang, X. An optical ‘Janus’ device for integrated photonics. Adv. Mater. 22, 2561–2564 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Glesk, I. et al. All-optical switching using nonlinear subwavelength Mach-Zehnder on silicon. Opt. Express 19, 14031 (2011).

    Article  ADS  PubMed  Google Scholar 

  36. Cheben, P. et al. Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency. Opt. Express 23, 22553–22563 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Halir, R. et al. Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial. Laser Photonics Rev. 10, 1039–1046 (2016). This study exploited the anisotropy of SWG structures to achieve broadband operation.

    Article  ADS  CAS  Google Scholar 

  38. Sánchez-Postigo, A. et al. Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency. Opt. Lett. 41, 3013–3016 (2016).

    Article  ADS  PubMed  Google Scholar 

  39. Wangüemert-Pérez, J. G. et al. Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator. Opt. Lett. 39, 4442–4445 (2014). This paper proposed the use of SWG for enhanced waveguide sensing.

    Article  ADS  CAS  Google Scholar 

  40. Benedikovic, D. et al. Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides. Opt. Express 23, 22628–22635 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Wang, J. et al. Subwavelength grating enabled on-chip ultra-compact optical true time delay line. Sci. Rep. 6, 30235 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, Y. & Xiao, J. Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler. Sci. Rep. 6, 27949 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barwicz, T. et al. A metamaterial converter centered at 1490nm for interfacing standard fibers to nanophotonic waveguides. In Proc. Optical Fiber Communication Conference M2I.3 (Optical Society of America, 2016).

  44. Kang, J. et al. Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides. Opt. Lett. 42, 2094–2097 (2017).

    Article  ADS  PubMed  Google Scholar 

  45. Benedikovic, D. et al. L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography. Opt. Lett. 42, 3439–3442 (2017).

    Article  ADS  PubMed  Google Scholar 

  46. Flueckiger, J. et al. Sub-wavelength grating for enhanced ring resonator biosensor. Opt. Express 24, 15672–15686 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Yan, H. et al. Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides. Opt. Express 24, 29724–29733 (2016). This work demonstrated enhanced surface sensitivity for SWG waveguides.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton University Press, Princeton, 2008).

    MATH  Google Scholar 

  50. Chang-Hasnain, C. & Yang, W. High-contrast gratings for integrated optoelectronics. Adv. Opt. Photonics 4, 379–440 (2012).

    Article  ADS  CAS  Google Scholar 

  51. Piggott, A. Y. et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photon. 9, 374–377 (2015).

    Article  ADS  CAS  Google Scholar 

  52. Shen, B., Wang, P., Polson, R. & Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photon. 9, 378–382 (2015).

    Article  ADS  CAS  Google Scholar 

  53. Smith, D. R. & Pendry, J. B. Homogenization of metamaterials by field averaging (invited paper). J. Opt. Soc. Am. B 23, 391 (2006).

    Article  ADS  CAS  Google Scholar 

  54. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Li, Z. et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat. Nanotechnol. 12, 675–683 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Ortega-Moñux, A. et al. Disorder effects in subwavelength grating metamaterial waveguides. Opt. Express 25, 12222–12236 (2017).

    Article  ADS  PubMed  Google Scholar 

  58. Penadés, J. S. et al. Suspended silicon waveguides for long-wave infrared wavelengths. Opt. Lett. 43, 795–798 (2018).

    Article  ADS  PubMed  Google Scholar 

  59. Penadés, J. S. et al. Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding. Opt. Express 24, 22908–22916 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Almeida, V. R., Panepucci, R. R. & Lipson, M. Nanotaper for compact mode conversion. Opt. Lett. 28, 1302 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Sarmiento-Merenguel, J. D. et al. Controlling leakage losses in subwavelength grating silicon metamaterial waveguides. Opt. Lett. 41, 3443–3446 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Barwicz, T. et al. A novel approach to photonic packaging leveraging existing high-throughput microelectronic facilities. IEEE J. Sel. Top. Quant. 22, 455–466 (2016). This study used a metamaterial fibre–chip coupler for IBM’s advanced photonic packaging.

    Article  CAS  Google Scholar 

  63. Mekis, A. et al. A grating-coupler-enabled CMOS photonics platform. IEEE J. Sel. Top. Quant. 17, 597–608 (2011).

    Article  CAS  Google Scholar 

  64. Watanabe, T., Ayata, M., Koch, U., Fedoryshyn, Y. & Leuthold, J. Perpendicular grating coupler based on a blazed anti-back-reflection structure. J. Light. Technol. 35, 4663–4669 (2017).

    Article  ADS  Google Scholar 

  65. Cheng, Z. & Tsang, H. K. Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides. Opt. Lett. 39, 2206–2209 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Wang, Y. et al. Design of broadband subwavelength grating couplers with low back reflection. Opt. Lett. 40, 4647–4650 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Melati, D., Melloni, A. & Morichetti, F. Real photonic waveguides: guiding light through imperfections. Adv. Opt. Photonics 6, 156 (2014).

    Article  ADS  CAS  Google Scholar 

  68. Peng, B. et al. Metamaterial waveguides with low distributed backscattering in production O-band Si photonics. In Proc. Optical Fiber Communication Conference Tu3K.3 (Optical Society of America, 2017). This work showed the low-backscatter advantage of SWG waveguides.

  69. Gao, G. et al. Transmission of 2.86 Tb/s data stream in silicon subwavelength grating waveguides. Opt. Express 25, 2918 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Benedikovic, D. et al. Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths. Opt. Express 25, 19468–19478 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Ma, K., Han, S., Zhang, L., Shi, Y. & Dai, D. Optical forces in silicon subwavelength-grating waveguides. Opt. Express 25, 30876–30884 (2017).

    Article  ADS  PubMed  Google Scholar 

  72. Jahani, S. & Jacob, Z. Transparent sub-diffraction optics: nanoscale light confinement without metal. Optica 1, 96–100 (2014).

    Article  CAS  Google Scholar 

  73. Jahani, S. et al. Controlling evanescent waves on-chip using all-dielectric metamaterials for dense photonic integration. Nat. Commun. 9, 1893 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou, W. et al. Fully suspended slot waveguides for high refractive index sensitivity. Opt. Lett. 42, 1245–1248 (2017).

    Article  ADS  PubMed  Google Scholar 

  75. Halir, R., Cheben, P., Xu, D., Schmid, J. H. & Janz, S. Colorless directional coupler with dispersion engineered sub-wavelength structure. Opt. Express 20, 13470–13477 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Wang, Y. et al. Compact broadband directional couplers using subwavelength gratings. IEEE Photonics J. 8, 1–8 (2016).

    Google Scholar 

  77. Jensen, J. S. & Sigmund, O. Topology optimization for nano-photonics. Laser Photonics Rev. 5, 308–321 (2011).

    Article  ADS  CAS  Google Scholar 

  78. Frandsen, L. H. et al. Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material. Opt. Express 22, 8525 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Lu, L. et al. Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures. Opt. Lett. 41, 5051–5054 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Wu, H. & Dai, D. High-performance polarizing beam splitters based on cascaded bent directional couplers. IEEE Photonics Technol. Lett. 29, 474–477 (2017).

    Article  ADS  Google Scholar 

  81. Yu, Z., Cui, H. & Sun, X. Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt. Lett. 42, 3093–3096 (2017).

    Article  ADS  PubMed  Google Scholar 

  82. Xiong, Y. et al. Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance. Opt. Lett. 39, 6931–6934 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. He, Y. et al. Silicon polarization splitter and rotator using a subwavelength grating based directional coupler. In Proc. Optical Fiber Communication Conference Th1G.6 (Optical Society of America, 2017).

  84. Xu, L. et al. Polarization beam splitter based on MMI coupler with swg birefringence engineering on soi. IEEE Photonics Technol. Lett. 30, 403–406 (2018).

    Article  ADS  Google Scholar 

  85. Kashyap, R. Fiber Bragg Gratings 2nd edn (Academic Press, Burlington, 2009).

    Google Scholar 

  86. Pérez-Galacho, D. et al. Optical pump-rejection filter based on silicon sub-wavelength engineered photonic structures. Opt. Lett. 42, 1468–1471 (2017).

    Article  ADS  PubMed  Google Scholar 

  87. Wang, X. et al. Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process. Opt. Express 20, 15547 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Čtyroký, J. et al. Design of narrowband Bragg spectral filters in subwavelength grating metamaterial waveguides. Opt. Express 26, 179–194 (2018).

    Article  ADS  PubMed  Google Scholar 

  89. Naghdi, B. & Chen, L. R. Silicon photonic contradirectional couplers using subwavelength grating waveguides. Opt. Express 24, 23429–23438 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  90. Podmore, H. et al. Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer. Opt. Lett. 42, 1440–1443 (2017).

    Article  ADS  PubMed  Google Scholar 

  91. Notaros, J. et al. Ultra-efficient CMOS fiber-to-chip grating couplers. In Proc. OFC 2016 1–3 (IEEE, 2016).

  92. Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Poulton, C. V. et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 42, 4091 (2017).

    Article  ADS  PubMed  Google Scholar 

  94. Huang, Y. W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016). This work demonstrates a gate-tunable metasurface that allows dynamic electrical control of light phase and amplitude, with a modulation frequency greater than 10 MHz.

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Dabidian, N. et al. Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces. Nano Lett. 16, 3607–3615 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Park, J., Kang, J. H., Kim, S. J., Liu, X. & Brongersma, M. L. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett. 17, 407–413 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Sherrott, M. C. et al. Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces. Nano Lett. 17, 3027–3034 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Barwicz, T., Kamlapurkar, S., Martin, Y., Bruce, R. L. & Engelmann, S. A silicon metamaterial chip-to-chip coupler for photonic flip-chip applications. In Proc. Optical Fiber Communication Conference Th2A.39 (Optical Society of America, 2017).

  99. Jeong, S. et al. Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer. Opt. Express 21, 30163–30174 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  100. McGrath, D. ASML claims major EUV milestone. EETimes http://www.eetimes.com/document.asp?doc_id=1332012 (2017).

  101. Gavela, A. F., García, D. G., Ramirez, J. C. & Lechuga, L. M. Last advances in silicon-based optical biosensors. Sensors 16, 285 (2016).

    Article  Google Scholar 

  102. Mauser, K. W. et al. Resonant thermoelectric nanophotonics. Nat. Nanotechnol. 12, 770–775 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Berini, P. Surface plasmon photodetectors and their applications. Laser Photonics Rev. 8, 197–220 (2014).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Janz, D.-X. Xu, A. Ortega-Moñux, Í. Molina-Fernández, J. G. Wangüemert-Pérez, J. Lapointe, J. Čtyroký, C. Alonso-Ramos, D. Benedikovic, G. Mashanovich, A. V. Velasco, W. Ye, M. L. Calvo, L. Vivien, Y. Grinberg, D. Melati and M. Dado for discussions. R.H. acknowledges financial support from Ministerio de Economía y Competitividad, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad (cofinanciado FEDER) Proyecto TEC2016-80718-R. H.A.A. acknowledges financial support from the Air Force Office of Scientific Research under grant number FA9550-16-1-0019.

Author information

Authors and Affiliations

Authors

Contributions

J.H.S., R.H., P.C. and H.A.A. wrote the manuscript. P.C. and D.R.S. contributed to its preparation.

Corresponding author

Correspondence to Pavel Cheben.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheben, P., Halir, R., Schmid, J.H. et al. Subwavelength integrated photonics. Nature 560, 565–572 (2018). https://doi.org/10.1038/s41586-018-0421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0421-7

Keywords

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing