Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenic suppression of PHLPP1 in human melanoma

Abstract

Akt is constitutively activated in up to 70% of human melanomas and has an important role in the pathogenesis of the disease. However, little is known about protein phosphatases that dephosphorylate and thereby inactivate it in melanoma cells. Here we report that suppression of pleckstrin homology domain and leucine-rich repeat Ser/Thr protein phosphatase 1 (PHLPP1) by DNA methylation promotes Akt activation and has an oncogenic role in melanoma. While it is commonly downregulated, overexpression of PHLPP1 reduces Akt activation and inhibits melanoma cell proliferation in vitro, and retards melanoma growth in a xenograft model. In contrast, knockdown of PHLPP1 increases Akt activation, enhances melanoma cell and melanocyte proliferation, and results in anchorage-independent growth of melanocytes. Suppression of PHLPP1 involves blockade of binding of the transcription factor Sp1 to the PHLPP1 promoter. Collectively, these results suggest that suppression of PHLPP1 by DNA methylation contributes to melanoma development and progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Courtney KD, Corcoran RB, Engelman JA . The PI3K pathway as drug target in human cancer. J Clin Oncol 2010; 28: 1075–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferte C, Andre F, Soria JC . Molecular circuits of solid tumors: prognostic and predictive tools for bedside use. Nat Rev Clin Oncol 2010; 7: 367–380.

    Article  CAS  PubMed  Google Scholar 

  3. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  PubMed  Google Scholar 

  4. Smalley KS . Understanding melanoma signaling networks as the basis for molecular targeted therapy. J Invest Dermatol 2010; 130: 28–37.

    Article  CAS  PubMed  Google Scholar 

  5. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011; 364: 2507–2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Houslay MD . Hard times for oncogenic BRAF-expressing melanoma cells. Cancer Cell 2011; 19: 3–4.

    Article  CAS  PubMed  Google Scholar 

  7. Ribas A, Flaherty KT . BRAF targeted therapy changes the treatment paradigm in melanoma. Nat Rev Clin Oncol 2011; 8: 426–433.

    Article  CAS  PubMed  Google Scholar 

  8. Jiang CC, Lai F, Thorne RF, Yang F, Liu H, Hersey P et al. MEK-independent survival of B-RAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720. Clin Cancer Res 2011; 17: 721–730.

    Article  CAS  PubMed  Google Scholar 

  9. Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 2011; 147: 382–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Paraiso KH, Xiang Y, Rebecca VW, Abel EV, Chen YA, Munko AC et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 2011; 71: 2750–2760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Poulikakos PI, Rosen N . Mutant BRAF melanomas—dependence and resistance. Cancer Cell 2011; 19: 11–15.

    Article  CAS  PubMed  Google Scholar 

  12. Cheung M, Sharma A, Madhunapantula SV, Robertson GP . Akt3 and mutant V600E B-Raf cooperate to promote early melanoma development. Cancer Res 2008; 68: 3429–3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE Jr. et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 2009; 41: 544–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Franke TF, Kaplan DR, Cantley LC . PI3K: downstream AKTion blocks apoptosis. Cell 1997; 88: 435–437.

    Article  CAS  PubMed  Google Scholar 

  15. Majerus PW, Kisseleva MV, Norris FA . The role of phosphatases in inositol signaling reactions. J Biol Chem 1999; 274: 10669–10672.

    Article  CAS  PubMed  Google Scholar 

  16. Park SJ, Itoh T, Takenawa T . Phosphatidylinositol 4-phosphate 5-kinase type I is regulated through phosphorylation response by extracellular stimuli. J Biol Chem 2001; 276: 4781–4787.

    Article  CAS  PubMed  Google Scholar 

  17. Bozulic L, Hemmings BA . PIKKing on PKB: regulation of PKB activity by phosphorylation. Curr Opin Cell Biol 2009; 21: 256–261.

    Article  CAS  PubMed  Google Scholar 

  18. Franke TF . PI3K/Akt: getting it right matters. Oncogene 2008; 27: 6473–6488.

    Article  CAS  PubMed  Google Scholar 

  19. Fayard E, Tintignac LA, Baudry A, Hemmings BA . Protein kinase B/Akt at a glance. J Cell Sci 2005; 118: 5675–5678.

    Article  CAS  PubMed  Google Scholar 

  20. O'Neill AK, Niederst MJ, Newton AC . Suppression of survival signalling pathways by the phosphatase PHLPP. FEBS J 2013; 280: 572–583.

    Article  CAS  PubMed  Google Scholar 

  21. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006; 127: 125–137.

    Article  CAS  PubMed  Google Scholar 

  22. Gao T, Furnari F, Newton AC . PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 2005; 18: 13–24.

    Article  CAS  PubMed  Google Scholar 

  23. Chen M, Pratt CP, Zeeman ME, Schultz N, Taylor BS, O'Neill A et al. Identification of PHLPP1 as a tumor suppressor reveals the role of feedback activation in PTEN-mutant prostate cancer progression. Cancer Cell 2011; 20: 173–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Warfel NA, Newton AC . Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP): a new player in cell signaling. J Biol Chem 2012; 287: 3610–3616.

    Article  CAS  PubMed  Google Scholar 

  25. Nitsche C, Edderkaoui M, Moore RM, Eibl G, Kasahara N, Treger J et al. The phosphatase PHLPP1 regulates Akt2, promotes pancreatic cancer cell death, and inhibits tumor formation. Gastroenterology 2012; 142: e371–e375.

    Article  Google Scholar 

  26. Liu J, Weiss HL, Rychahou P, Jackson LN, Evers BM, Gao T . Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis. Oncogene 2009; 28: 994–1004.

    Article  CAS  PubMed  Google Scholar 

  27. O'Hayre M, Niederst M, Fecteau JF, Nguyen VM, Kipps TJ, Messmer D et al. Mechanisms and consequences of the loss of PHLPP1 phosphatase in chronic lymphocytic leukemia (CLL). Leukemia 2012; 26: 1689–1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Molina JR, Agarwal NK, Morales FC, Hayashi Y, Aldape KD, Cote G et al. PTEN, NHERF1 and PHLPP form a tumor suppressor network that is disabled in glioblastoma. Oncogene 2012; 31: 1264–1274.

    Article  CAS  PubMed  Google Scholar 

  29. Gao T, Brognard J, Newton AC . The phosphatase PHLPP controls the cellular levels of protein kinase C. J Biol Chem 2008; 283: 6300–6311.

    Article  CAS  PubMed  Google Scholar 

  30. Liu J, Stevens PD, Li X, Schmidt MD, Gao T . PHLPP-mediated dephosphorylation of S6K1 inhibits protein translation and cell growth. Mol Cell Biol 2011; 31: 4917–4927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qiao M, Wang Y, Xu X, Lu J, Dong Y, Tao W et al. Mst1 is an interacting protein that mediates PHLPPs' induced apoptosis. Mol Cell 2010; 38: 512–523.

    Article  CAS  PubMed  Google Scholar 

  32. Brognard J, Sierecki E, Gao T, Newton AC . PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 2007; 25: 917–931.

    Article  CAS  PubMed  Google Scholar 

  33. Shimizu K, Okada M, Nagai K, Fukada Y . Suprachiasmatic nucleus circadian oscillatory protein, a novel binding partner of K-Ras in the membrane rafts, negatively regulates MAPK pathway. J Biol Chem 2003; 278: 14920–14925.

    Article  CAS  PubMed  Google Scholar 

  34. Davies MA, Stemke-Hale K, Lin E, Tellez C, Deng W, Gopal YN et al. Integrated molecular and clinical analysis of AKT activation in metastatic melanoma. Clin Cancer Res 2009; 15: 7538–7546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Curtin JA, Stark MS, Pinkel D, Hayward NK, Bastian BC . PI3-kinase subunits are infrequent somatic targets in melanoma. J Invest Dermatol 2006; 126: 1660–1663.

    Article  CAS  PubMed  Google Scholar 

  36. Curtin JA, Busam K, Pinkel D, Bastian BC . Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 2006; 24: 4340–4346.

    Article  CAS  PubMed  Google Scholar 

  37. Ye Y, Jin L, Wilmott JS, Hu WL, Yosufi B, Thorne RF et al. PI(4,5)P2 5-phosphatase A regulates PI3K/Akt signalling and has a tumour suppressive role in human melanoma. Nat Commun 2013; 4: 1508.

    Article  PubMed  Google Scholar 

  38. Liang J, Slingerland JM . Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2003; 2: 339–345.

    Article  CAS  PubMed  Google Scholar 

  39. Govindarajan B, Sligh JE, Vincent BJ, Li M, Canter JA, Nickoloff BJ et al. Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. J Clin Invest 2007; 117: 719–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stark M, Hayward N . Genome-wide loss of heterozygosity and copy number analysis in melanoma using high-density single-nucleotide polymorphism arrays. Cancer Res 2007; 67: 2632–2642.

    Article  CAS  PubMed  Google Scholar 

  41. Bradley EW, Carpio LR, Westendorf JJ . Histone deacetylase 3 suppression increases PH domain and leucine-rich repeat phosphatase (Phlpp)1 expression in chondrocytes to suppress Akt signaling and matrix secretion. J Biol Chem 2013; 288: 9572–9582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klug M, Rehli M . Functional analysis of promoter CpG methylation using a CpG-free luciferase reporter vector. Epigenetics 2006; 1: 127–130.

    Article  PubMed  Google Scholar 

  43. Rishi V, Bhattacharya P, Chatterjee R, Rozenberg J, Zhao J, Glass K et al. CpG methylation of half-CRE sequences creates C/EBPalpha binding sites that activate some tissue-specific genes. Proc Natl Acad Sci USA 2010; 107: 20311–20316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 2011; 19: 575–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D et al. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 2009; 16: 115–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fedele CG, Ooms LM, Ho M, Vieusseux J, O’Toole SA, Millar EK et al. Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc Natl Acad Sci USA 2010; 107: 22231–22236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stahl JM, Sharma A, Cheung M, Zimmerman M, Cheng JQ, Bosenberg MW et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res 2004; 64: 7002–7010.

    Article  CAS  PubMed  Google Scholar 

  48. Warfel NA, Niederst M, Stevens MW, Brennan PM, Frame MC, Newton AC . Mislocalization of the E3 ligase, beta-transducin repeat-containing protein 1 (beta-TrCP1), in glioblastoma uncouples negative feedback between the pleckstrin homology domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and Akt. J Biol Chem 2011; 286: 19777–19788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mirmohammadsadegh A, Marini A, Nambiar S, Hassan M, Tannapfel A, Ruzicka T et al. Epigenetic silencing of the PTEN gene in melanoma. Cancer Res 2006; 66: 6546–6552.

    Article  CAS  PubMed  Google Scholar 

  50. Beezhold K, Liu J, Kan H, Meighan T, Castranova V, Shi X et al. miR-190-mediated downregulation of PHLPP contributes to arsenic-induced Akt activation and carcinogenesis. Toxicol Sci 2011; 123: 411–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li L, Davie JR . The role of Sp1 and Sp3 in normal and cancer cell biology. Ann Anat 2010; 192: 275–283.

    Article  CAS  PubMed  Google Scholar 

  52. Saavedra A, Garcia-Martinez JM, Xifro X, Giralt A, Torres-Peraza JF, Canals JM et al. PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the PI3K/Akt pro-survival pathway in Huntington's disease striatum. Cell Death Differ 2010; 17: 324–335.

    Article  CAS  PubMed  Google Scholar 

  53. Patterson SJ, Han JM, Garcia R, Assi K, Gao T, O'Neill A et al. Cutting edge: PHLPP regulates the development, function, and molecular signaling pathways of regulatory T cells. J Immunol 2011; 186: 5533–5537.

    Article  CAS  PubMed  Google Scholar 

  54. Madhunapantula SV, Robertson GP . The PTEN-AKT3 signaling cascade as a therapeutic target in melanoma. Pigment Cell Melanoma Res 2009; 22: 400–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gillespie S, Zhang XD, Hersey P . Variable expression of protein kinase C epsilon in human melanoma cells regulates sensitivity to TRAIL-induced apoptosis. Mol Cancer Ther 2005; 4: 668–676.

    Article  CAS  PubMed  Google Scholar 

  56. Jin L, Hu WL, Jiang CC, Wang JX, Han CC, Chu P et al. MicroRNA-149*, a p53-responsive microRNA, functions as an oncogenic regulator in human melanoma. Proc Natl Acad Sci USA 2011; 108: 15840–15845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tay KH, Jin L, Tseng HY, Jiang CC, Ye Y, Thorne RF et al. Suppression of PP2A is critical for protection of melanoma cells upon endoplasmic reticulum stress. Cell death & disease 2012; 3: e337.

    Article  CAS  Google Scholar 

  58. Zhuang L, Scolyer RA, Lee CS, McCarthy SW, Cooper WA, Zhang XD et al. Expression of glucose-regulated stress protein GRP78 is related to progression of melanoma. Histopathology 2009; 54: 462–470.

    Article  PubMed  Google Scholar 

  59. Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY et al. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene 2013; 32: 1910–1920.

    Article  CAS  PubMed  Google Scholar 

  60. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . Methylation-specific PCR a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821–9826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Health and Medical Research Council (NHMRC), the Cancer Council NSW, Cancer Institute NSW and Hunter Medical Research Institute, Australia; and National Natural Science Foundation of China. XDZ is supported by senior research fellowships of NHMRC. RAS is supported by the Cancer Institute NSW Fellowship Program. We thank Dr Tianyan Gao (Markey Cancer Center, University of Kentucky) for the pcDNA3-PHLPP1-HA constructs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X D Zhang or S T Guo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, L., Jin, L., Tseng, HY. et al. Oncogenic suppression of PHLPP1 in human melanoma. Oncogene 33, 4756–4766 (2014). https://doi.org/10.1038/onc.2013.420

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.420

Keywords

This article is cited by

Search

Quick links