Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Flotillins as regulators of ErbB2 levels in breast cancer

Abstract

Amplification and overexpression of the receptor tyrosine kinase ErbB2 occur in up to 30% of human breast cancers, and high ErbB2 levels are correlated with poor prognosis for breast cancer patients. In contrast to the epithelial growth factor receptor (ErbB1), ErbB2 is not downregulated by ligand-induced mechanisms. Here we show that flotillins are involved in the stabilization of ErbB2 at the plasma membrane. In SKBR3 breast cancer cells and breast cancer tissue, a positive correlation between flotillin and ErbB2 expression levels could be demonstrated. Moreover, the tissue microarray analyses of biopsies from 194 patients diagnosed with carcinomas of the breast showed that flotillin-2 emerged as a potential predictor of prognosis in breast cancer. Depletion of flotillin-1 and flotillin-2 leads to internalization and degradation of ErbB2. Furthermore, flotillin-1 and -2 were found to be in a molecular complex with ErbB2 and Hsp90. The depletion of one of these proteins results in disruption of this complex, followed by destabilization of ErbB2 at the membrane, and its internalization and degradation. As a consequence, ErbB2-triggered downstream signalling is inhibited. Our data demonstrate a novel mechanism for interfering with ErbB2 signalling, which potentially can have clinical impact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Olayioye MA, Neve RM, Lane HA, Hynes NE . The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000; 19: 3159–3167.

    Article  CAS  Google Scholar 

  2. Yarden Y, Sliwkowski MX . Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2: 127–137.

    Article  CAS  Google Scholar 

  3. Arias-Romero LE, Saha S, Villamar-Cruz O, Yip SC, Ethier SP, Zhang ZY et al. Activation of Src by protein tyrosine phosphatase 1B Is required for ErbB2 transformation of human breast epithelial cells. Cancer Res 2009; 69: 4582–4588.

    Article  CAS  Google Scholar 

  4. Baulida J, Kraus MH, Alimandi M, Di Fiore PP, Carpenter G . All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 1996; 271: 5251–5257.

    Article  CAS  Google Scholar 

  5. Jones RB, Gordus A, Krall JA, MacBeath G . A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 2006; 439: 168–174.

    Article  CAS  Google Scholar 

  6. Baselga J, Swain SM . Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 2009; 9: 463–475.

    Article  CAS  Google Scholar 

  7. Pauletti G, Dandekar S, Rong H, Ramos L, Peng H, Seshadri R et al. Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol 2000; 18: 3651–3664.

    Article  CAS  Google Scholar 

  8. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    Article  CAS  Google Scholar 

  9. Wu Y, Khan H, Chillar R, Vadgama JV . Prognostic value of plasma HER-2/neu in African American and Hispanic women with breast cancer. Int J Oncol 1999; 14: 1021–1037.

    CAS  PubMed  Google Scholar 

  10. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–792.

    Article  CAS  Google Scholar 

  11. Lerdrup M, Hommelgaard AM, Grandal M, van Deurs B . Geldanamycin stimulates internalization of ErbB2 in a proteasome-dependent way. J Cell Sci 2006; 119: 85–95.

    Article  CAS  Google Scholar 

  12. Mimnaugh EG, Chavany C, Neckers L . Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 1996; 271: 22796–22801.

    Article  CAS  Google Scholar 

  13. Xu W, Mimnaugh E, Rosser MF, Nicchitta C, Marcu M, Yarden Y et al. Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J Biol Chem 2001; 276: 3702–3708.

    Article  CAS  Google Scholar 

  14. Jones KL, Buzdar AU . Evolving novel anti-HER2 strategies. Lancet Oncol 2009; 10: 1179–1187.

    Article  CAS  Google Scholar 

  15. Modi S, D'Andrea G, Norton L, Yao TJ, Caravelli J, Rosen PP et al. A phase I study of cetuximab/paclitaxel in patients with advanced-stage breast cancer. Clin Breast Cancer 2006; 7: 270–277.

    Article  CAS  Google Scholar 

  16. Modi S, Stopeck AT, Gordon MS, Mendelson D, Solit DB, Bagatell R et al. Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J Clin Oncol 2007; 25: 5410–5417.

    Article  CAS  Google Scholar 

  17. Schulte T, Paschke KA, Laessing U, Lottspeich F, Stuermer CA . Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration. Development 1997; 124: 577–587.

    CAS  PubMed  Google Scholar 

  18. Langhorst MF, Reuter A, Stuermer CA . Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci 2005; 62: 2228–2240.

    Article  CAS  Google Scholar 

  19. Neumann-Giesen C, Falkenbach B, Beicht P, Claasen S, Luers G, Stuermer CA et al. Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochem J 2004; 378: 509–518.

    Article  CAS  Google Scholar 

  20. Stuermer CA, Lang DM, Kirsch F, Wiechers M, Deininger SO, Plattner H . Glycosylphosphatidyl inositol-anchored proteins and fyn kinase assemble in noncaveolar plasma membrane microdomains defined by reggie-1 and -2. Mol Biol Cell 2001; 12: 3031–3045.

    Article  CAS  Google Scholar 

  21. Glebov OO, Bright NA, Nichols BJ . Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 2006; 8: 46–54.

    Article  CAS  Google Scholar 

  22. Pust S, Dyve AB, Torgersen ML, van Deurs B, Sandvig K . Interplay between toxin transport and flotillin localization. PLoS One 2010; 5: e8844.

    Article  Google Scholar 

  23. Saslowsky DE, Cho JA, Chinnapen H, Massol RH, Chinnapen DJ, Wagner JS et al. Intoxication of zebrafish and mammalian cells by cholera toxin depends on the flotillin/reggie proteins but not Derlin-1 or -2. J Clin Invest 2010; 120: 4399–4409.

    Article  CAS  Google Scholar 

  24. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 2006; 3: 995–1000.

    Article  Google Scholar 

  25. Spears M, Taylor KJ, Munro AF, Cunningham CA, Mallon EA, Twelves CJ et al. In situ detection of HER2:HER2 and HER2:HER3 protein-protein interactions demonstrates prognostic significance in early breast cancer. Breast Cancer Res Treat 2012; 132: 463–470.

    Article  CAS  Google Scholar 

  26. Citri A, Kochupurakkal BS, Yarden Y . The achilles heel of ErbB-2/HER2: regulation by the Hsp90 chaperone machine and potential for pharmacological intervention. Cell Cycle 2004; 3: 51–60.

    Article  CAS  Google Scholar 

  27. Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO et al. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 2003; 11: 495–505.

    Article  CAS  Google Scholar 

  28. Cicenas J, Urban P, Kung W, Vuaroqueaux V, Labuhn M, Wight E et al. Phosphorylation of tyrosine 1248-ERBB2 measured by chemiluminescence-linked immunoassay is an independent predictor of poor prognosis in primary breast cancer patients. Eur J Cancer 2006; 42: 636–645.

    Article  CAS  Google Scholar 

  29. Engelman JA, Luo J, Cantley LC . The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006; 7: 606–619.

    Article  CAS  Google Scholar 

  30. Yuan TL, Cantley LC . PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008; 27: 5497–5510.

    Article  CAS  Google Scholar 

  31. Gomez V, Sese M, Santamaria A, Martinez JD, Castellanos E, Soler M et al. Regulation of aurora B kinase by the lipid raft protein flotillin-1. J Biol Chem 2010; 285: 20683–20690.

    Article  CAS  Google Scholar 

  32. Zhao F, Zhang J, Liu YS, Li L, He YL . Research advances on flotillins. Virol J 2011; 8: 479.

    Article  CAS  Google Scholar 

  33. Vassilieva EV, Ivanov AI, Nusrat A . Flotillin-1 stabilizes caveolin-1 in intestinal epithelial cells. Biochem Biophys Res Commun 2009; 379: 460–465.

    Article  CAS  Google Scholar 

  34. Xu W, Marcu M, Yuan X, Mimnaugh E, Patterson C, Neckers L . Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci USA 2002; 99: 12847–12852.

    Article  CAS  Google Scholar 

  35. Zhou P, Fernandes N, Dodge IL, Reddi AL, Rao N, Safran H et al. ErbB2 degradation mediated by the co-chaperone protein CHIP. J Biol Chem 2003; 278: 13829–13837.

    Article  CAS  Google Scholar 

  36. Amaddii M, Meister M, Banning A, Tomasovic A, Mooz J, Rajalingam K et al. Flotillin-1/reggie-2 plays a dual role in the activation of receptor tyrosine kinase/map kinase signaling. J Biol Chem 2012; 287: 7265–7278.

    Article  CAS  Google Scholar 

  37. Tomasovic A, Traub S, Tikkanen R . Molecular networks in FGF signaling: Flotillin-1 and Cbl-associated protein compete for the binding to fibroblast growth factor receptor substrate 2. PLoS One 2012; 7: e29739.

    Article  CAS  Google Scholar 

  38. Hazarika P, McCarty MF, Prieto VG, George S, Babu D, Koul D et al. Up-regulation of Flotillin-2 is associated with melanoma progression and modulates expression of the thrombin receptor protease activated receptor 1. Cancer Res 2004; 64: 7361–7369.

    Article  CAS  Google Scholar 

  39. Lin C, Wu Z, Lin X, Yu C, Shi T, Zeng Y et al. Knockdown of FLOT1 impairs cell proliferation and tumorigenicity in breast cancer through upregulation of FOXO3a. Clin Cancer Res 2011; 17: 3089–3099.

    Article  CAS  Google Scholar 

  40. Marquez DC, Chen HW, Curran EM, Welshons WV, Pietras RJ . Estrogen receptors in membrane lipid rafts and signal transduction in breast cancer. Mol Cell Endocrinol 2006; 246: 91–100.

    Article  CAS  Google Scholar 

  41. Wu Y, Shang X, Sarkissyan M, Slamon D, Vadgama JV . FOXO1A is a target for HER2-overexpressing breast tumors. Cancer Res 2010; 70: 5475–5485.

    Article  CAS  Google Scholar 

  42. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 1998; 4: 844–847.

    Article  CAS  Google Scholar 

  43. Allred DC, Harvey JM, Berardo M, Clark GM . Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 1998; 11: 155–168.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Wanja Kildal, Anne-Mari Gjestvang Pedersen and Anne Engen for their expert technical assistance. We thank Gisou van der Goot (EPFL, Lausanne, Switzerland) for providing the polyclonal flotillin-1 antibody used in confocal microscopy. We thank Ørnulf Borgan for assistance with the analysis of the results from the breast tissue samples. We thank the South-Eastern Norway Regional Health Authority (Helse Sør-Øst), the Norwegian Research Council and the Norwegian Cancer Society for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Sandvig.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pust, S., Klokk, T., Musa, N. et al. Flotillins as regulators of ErbB2 levels in breast cancer. Oncogene 32, 3443–3451 (2013). https://doi.org/10.1038/onc.2012.357

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.357

Keywords

This article is cited by

Search

Quick links