Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Notch-1 signaling promotes the cyclinD1-dependent generation of mammary tumor-initiating cells that can revert to bi-potential progenitors from which they arise

Abstract

In a previous work, we reported that young transgenic (Tg) mice expressing the intracellular domain of Notch1 (N1IC) showed expansion of lin CD24+ CD29high mammary cells enriched for stem cells and later developed mammary tumors. Mammary tumor formation was abolished or greatly reduced in cyclin D1−/− or cyclin D1+/− N1IC Tg mice, respectively. Here, we studied the epithelial cell subsets present in N1IC-induced tumors. CD24 CD29int and CD24+ CD29high cells were found to be present at low numbers in tumors. The latter had the same properties as those expanded in young Tg females, and neither cell population showed tumor-initiating potential nor were they required for maintenance of tumors after transplantation. CD24int CD29int cells were identified as tumor-initiating and mammosphere-forming cells and represent a large percentage tumor cells in this model. Their number was significantly lower in tumors from cyclin D1+/− N1IC Tg mice. Using cyclin D1 shRNA knockdown, we also show that N1IC-induced tumor cells remain addicted to cyclin D1 for growth and survival. Interestingly, at lower levels of cyclin D1 or after transplantation in the presence of normal mammary cells, these N1IC-expressing tumor cells reverted to a state of low malignancy and differentiate into duct-like structures. They seem to adopt the fate of bi-potential stem/progenitor cells similar to that of the expanded CD24+ CD29high stem/progenitor cells from which they are likely to be derived. Our data indicate that decreasing cyclin D1 levels would be an efficient treatment for tumors induced by N1 signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Visvader JE . Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 2009; 23: 2563–2577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dontu G, El Ashry D, Wicha MS . Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 2004; 15: 193–197.

    Article  CAS  PubMed  Google Scholar 

  3. Smith GH, Chepko G . Mammary epithelial stem cells. Microsc Res Tech 2001; 52: 190–203.

    Article  CAS  PubMed  Google Scholar 

  4. Kordon EC, Smith GH . An entire functional mammary gland may comprise the progeny from a single cell. Development 1998; 125: 1921–1930.

    CAS  PubMed  Google Scholar 

  5. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439: 84–88.

    Article  CAS  PubMed  Google Scholar 

  6. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439: 993–997.

    Article  CAS  PubMed  Google Scholar 

  7. DeOme KB, Faulkin LJ, Bern HA, Blair PB . Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 1959; 19: 515–520.

    CAS  PubMed  Google Scholar 

  8. Smith GH, Medina D . Re-evaluation of mammary stem cell biology based on in vivo transplantation. Breast Cancer Res 2008; 10: 203–208.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 2011; 479: 189–193.

    Article  CAS  PubMed  Google Scholar 

  10. Heppner GH . Tumor heterogeneity. Cancer Res 1984; 44: 2259–2265.

    CAS  PubMed  Google Scholar 

  11. Shackleton M, Quintana E, Fearon ER, Morrison SJ . Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 2009; 138: 822–829.

    Article  CAS  PubMed  Google Scholar 

  12. Illmensee K, Mintz B . Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc Natl Acad Sci USA 1976; 73: 549–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bussard KM, Boulanger CA, Booth BW, Bruno RD, Smith GH . Reprogramming human cancer cells in the mouse mammary gland. Cancer Res 2010; 70: 6336–6343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Booth BW, Boulanger CA, Anderson LH, Smith GH . The normal mammary microenvironment suppresses the tumorigenic phenotype of mouse mammary tumor virus-neu-transformed mammary tumor cells. Oncogene 2011; 30: 679–689.

    Article  CAS  PubMed  Google Scholar 

  15. Clarke MF, Fuller M . Stem cells and cancer: two faces of eve. Cell 2006; 124: 1111–1115.

    Article  CAS  PubMed  Google Scholar 

  16. Jordan CT, Guzman ML, Noble M . Cancer stem cells. N Engl J Med 2006; 355: 1253–1261.

    Article  CAS  PubMed  Google Scholar 

  17. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  18. Gupta PB, Chaffer CL, Weinberg RA . Cancer stem cells: mirage or reality? Nat Med 2009; 15: 1010–1012.

    Article  CAS  PubMed  Google Scholar 

  19. Clevers H . The cancer stem cell: premises, promises and challenges. Nat Med 2011; 17: 313–319.

    CAS  PubMed  Google Scholar 

  20. Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E et al. Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 2010; 7: 279–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dirks PB . Cancer: stem cells and brain tumours. Nature 2006; 444: 687–688.

    Article  CAS  PubMed  Google Scholar 

  22. Cho RW, Wang X, Diehn M, Shedden K, Chen GY, Sherlock G et al. Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells 2008; 26: 364–371.

    Article  CAS  PubMed  Google Scholar 

  23. Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E . Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res 2007; 67: 8671–8681.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang M, Behbod F, Atkinson RL, Landis MD, Kittrell F, Edwards D et al. Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 2008; 68: 4674–4682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE . The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 2008; 68: 7711–7717.

    Article  CAS  PubMed  Google Scholar 

  26. Li Z, Tognon CE, Godinho FJ, Yasaitis L, Hock H, Herschkowitz JI et al. ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex. Cancer Cell 2007; 12: 542–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu BY, McDermott SP, Khwaja SS, Alexander CM . The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA 2004; 101: 4158–4163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baker M . Melanoma in mice casts doubt on scarcity of cancer stem cells. Nature 2008; 456: 553.

    Article  CAS  PubMed  Google Scholar 

  29. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A . Tumor growth need not be driven by rare cancer stem cells. Science 2007; 317: 337.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng X, Shen G, Yang X, Liu W . Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 2007; 67: 3691–3697.

    Article  CAS  PubMed  Google Scholar 

  31. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ . Efficient tumour formation by single human melanoma cells. Nature 2008; 456: 593–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hill RP . Identifying cancer stem cells in solid tumors: case not proven. Cancer Res 2006; 66: 1891–1895.

    Article  CAS  PubMed  Google Scholar 

  33. Rosen JM, Jordan CT . The increasing complexity of the cancer stem cell paradigm. Science 2009; 324: 1670–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Polyak K, Hahn WC . Roots and stems: stem cells in cancer. Nat Med 2006; 12: 296–300.

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 2003; 100: 15853–15858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, Natrajan R et al. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 2010; 7: 403–417.

    Article  CAS  PubMed  Google Scholar 

  37. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15: 907–913.

    Article  CAS  PubMed  Google Scholar 

  38. Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 2011; 8: 149–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Callahan R, Egan SE . Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia 2004; 9: 145–163.

    Article  PubMed  Google Scholar 

  40. Robinson DR, Kalyana-Sundaram S, Wu YM, Shankar S, Cao X, Ateeq B et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med 2011; 17: 1646–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS . Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 2004; 6: R605–R615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat ML, Oakes SR et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 2008; 3: 429–441.

    Article  CAS  PubMed  Google Scholar 

  43. Ling H, Sylvestre JR, Jolicoeur P . Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors. Oncogene 2010; 29: 4543–4554.

    Article  CAS  PubMed  Google Scholar 

  44. Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res 2008; 10: R52.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dontu G, Wicha MS . Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia 2005; 10: 75–86.

    Article  PubMed  Google Scholar 

  46. Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 2007; 117: 3988–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010; 140: 62–73.

    Article  CAS  PubMed  Google Scholar 

  48. Hu C, Dievart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P . Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Patho 2006; 168: 973–990.

    Article  CAS  Google Scholar 

  49. Hu Y, Smyth GK . ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 2009; 347: 70–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant to PJ from the Canadian Institute of Health Research (CIHR). PJ is a recipient of a Canada Research Chair. We thank Jean-René Sylvestre for excellent animal care. We are grateful to Annie Lavallée as well as to Éric Massicotte and Julie Lord for their excellent assistance with tissue sections and flow cytometry, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Jolicoeur.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, H., Jolicoeur, P. Notch-1 signaling promotes the cyclinD1-dependent generation of mammary tumor-initiating cells that can revert to bi-potential progenitors from which they arise. Oncogene 32, 3410–3419 (2013). https://doi.org/10.1038/onc.2012.341

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.341

Keywords

This article is cited by

Search

Quick links