Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Endoplasmic reticulum stress triggers autophagy in malignant glioma cells undergoing cyclosporine A-induced cell death

Abstract

Autophagy is a conserved, self-digestion process that is activated in response to nutrient limitation but acting also as an alternative death mechanism under certain conditions. It is accompanied by the progressive formation of vesicle structures from autophagosomes to autophagolysosomes orchestrated by autophagy effectors (Atg proteins) and modulators (that is, mTOR—mammalian target of rapamycin as a negative regulator). Malignant gliomas are highly resistant to current therapies that induce apoptosis, thus induction of the alternative cell death is an attractive strategy. We demonstrate that cyclosporine A (CsA, an immunophilin/calcineurin inhibitor) induces cell death with some apoptotic features but also accompanied by the appearance of numerous cytoplasmic vacuoles, immunostained for endoplasmic reticulum (ER) and autophagy markers. The induction of ER stress in glioma cells by CsA was evidenced by detection of unfolded protein response activation (phosphorylation of PERK, accumulation of IRE1α) and accumulation of ER stress-associated proteins (BIP and CHOP). Formation of the acidic vesicular organelles, increase of autophagic vacuoles, GFP-LC3 punctation (microtubule-associated protein light chain 3) and LC3-II accumulation upon CsA treatment confirmed activation of autophagy. Decrease of phosphorylation of 4E-BP1, p70S6K1 and its downstream target S6 ribosomal protein demonstrate inhibition of mTOR signaling by CsA. Salubrinal and silencing of PERK and IRE1α partially blocked CsA-induced accumulation of LC3-II. It suggests that ER stress precedes CsA-induced autophagy. Surprisingly, silencing of autophagy effectors ULK1, Atg5 or Atg7 increased the level of active caspases 3, 7 and PARP degradation in CsA-treated cells. Our results demonstrate that CsA induces both apoptosis and autophagy in malignant glioma cells via induction of ER stress and inhibition of mTOR/p70S6K1 pathway, however autophagy is cytoprotective in this context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Klionsky DJ, Emr SD . Autophagy as a regulated pathway of cellular degradation. Science 2000; 290: 1717–1721.

    Article  CAS  Google Scholar 

  2. Kondo Y, Kanzawa T, Sawaya R, Kondo S . The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005; 5: 726–734.

    Article  CAS  Google Scholar 

  3. Levine B, Klionsky DJ . Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6: 463–477.

    Article  CAS  Google Scholar 

  4. Yang Z, Klionsky DJ . Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010; 22: 124–131.

    Article  CAS  Google Scholar 

  5. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009; 20: 1981–1991.

    Article  CAS  Google Scholar 

  6. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009; 20: 1992−–2003.

    Article  Google Scholar 

  7. Neufeld TP . TOR-dependent control of autophagy: biting the hand that feeds. Curr Opin Cell Biol 2010; 22: 157–168.

    Article  CAS  Google Scholar 

  8. Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P . Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 2008; 90: 313–323.

    Article  CAS  Google Scholar 

  9. Iwamaru A, Kondo Y, Iwado E, Aoki H, Fujiwara K, Yokoyama T et al. Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene 2007; 26: 1840–1851.

    Article  CAS  Google Scholar 

  10. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006; 26: 9220–9231.

    Article  CAS  Google Scholar 

  11. Rutkowski DT, Kaufman RJ . A trip to the ER: coping with stress. Trends Cell Biol 2004; 14: 20–28.

    Article  CAS  Google Scholar 

  12. Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 2010; 120: 127–141.

    Article  CAS  Google Scholar 

  13. He C, Klionsky DJ . Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009; 43: 67–93.

    Article  CAS  Google Scholar 

  14. Kroemer G, Marino G, Levine B . Autophagy and the integrated stress response. Mol Cell 2010; 40: 280–293.

    Article  CAS  Google Scholar 

  15. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006; 10: 51–64.

    Article  CAS  Google Scholar 

  16. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ . Potential therapeutic applications of autophagy. Nat Rev Drug Discov 2007; 6: 304–312.

    Article  CAS  Google Scholar 

  17. Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A . Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 2008; 68: 1485–1494.

    Article  CAS  Google Scholar 

  18. Qadir MA, Kwok B, Dragowska WH, To KH, Le D, Bally MB et al. Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Res Treat 2008; 112: 389–403.

    Article  CAS  Google Scholar 

  19. Shingu T, Fujiwara K, Bogler O, Akiyama Y, Moritake K, Shinojima N et al. Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells. Int J Cancer 2009; 124: 1060–1071.

    Article  CAS  Google Scholar 

  20. Sotelo J, Briceno E, Lopez-Gonzalez MA . Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 2006; 144: 337–343.

    Article  CAS  Google Scholar 

  21. Dunn IF, Black PM . The neurosurgeon as local oncologist: cellular and molecular neurosurgery in malignant glioma therapy. Neurosurgery 2003; 52: 1411–1422, discussion 1422-1424.

    Article  Google Scholar 

  22. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007; 21: 2683–2710.

    Article  CAS  Google Scholar 

  23. Lefranc F, Facchini V, Kiss R . Proautophagic drugs: a novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist 2007; 12: 1395–1403.

    Article  CAS  Google Scholar 

  24. Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y . Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 2007; 72: 29–39.

    Article  CAS  Google Scholar 

  25. Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S . Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 2004; 64: 4286–4293.

    Article  CAS  Google Scholar 

  26. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S . Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 2004; 11: 448–457.

    Article  CAS  Google Scholar 

  27. Kanzawa T, Kondo Y, Ito H, Kondo S, Germano I . Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 2003; 63: 2103–2108.

    CAS  PubMed  Google Scholar 

  28. Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Lorente M, Egia A et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 2009; 119: 1359–1372.

    Article  CAS  Google Scholar 

  29. Kang C, Avery L . To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy 2008; 4: 82–84.

    Article  Google Scholar 

  30. Wang P, Heitman J . The cyclophilins. Genome Biol 2005; 6: 226.

    Article  Google Scholar 

  31. Zupanska A, Dziembowska M, Ellert-Miklaszewska A, Gaweda-Walerych K, Kaminska B . Cyclosporine a induces growth arrest or programmed cell death of human glioma cells. Neurochem Int 2005; 47: 430–441.

    Article  CAS  Google Scholar 

  32. Mosieniak G, Figiel I, Kaminska B . Cyclosporin A, an immunosuppressive drug, induces programmed cell death in rat C6 glioma cells by a mechanism that involves the AP-1 transcription factor. J Neurochem 1997; 68: 1142–1149.

    Article  CAS  Google Scholar 

  33. Pyrzynska B, Mosieniak G, Kaminska B . Changes of the trans-activating potential of AP-1 transcription factor during cyclosporin A-induced apoptosis of glioma cells are mediated by phosphorylation and alterations of AP-1 composition. J Neurochem 2000; 74: 42–51.

    Article  CAS  Google Scholar 

  34. Jia W, Loria RM, Park MA, Yacoub A, Dent P, Graf MR . The neuro-steroid, 5-androstene 3beta,17alpha diol; induces endoplasmic reticulum stress and autophagy through PERK/eIF2alpha signaling in malignant glioma cells and transformed fibroblasts. Int J Biochem Cell Biol 2010; 42: 2019–2029.

    Article  CAS  Google Scholar 

  35. Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J . Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci USA 2008; 105: 17414–17419.

    Article  CAS  Google Scholar 

  36. Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 2005; 307: 935–939.

    Article  CAS  Google Scholar 

  37. Gijtenbeek JM, van den Bent MJ, Vecht CJ . Cyclosporine neurotoxicity: a review. J Neurol 1999; 246: 339–346.

    Article  CAS  Google Scholar 

  38. Yoon HE, Yang CW . Established and newly proposed mechanisms of chronic cyclosporine nephropathy. Korean J Intern Med 2009; 24: 81–92.

    Article  CAS  Google Scholar 

  39. Ciechomska I, Legat M, Golab J, Wesolowska A, Kurzaj Z, Mackiewicz A et al. Cyclosporine A and its non-immunosuppressive derivative NIM811 induce apoptosis of malignant melanoma cells in in vitro and in vivo studies. Int J Cancer 2005; 117: 59–67.

    Article  CAS  Google Scholar 

  40. Pallet N, Bouvier N, Bendjallabah A, Rabant M, Flinois JP, Hertig A et al. Cyclosporine-induced endoplasmic reticulum stress triggers tubular phenotypic changes and death. Am J Transplant 2008; 8: 2283–2296.

    Article  CAS  Google Scholar 

  41. Pallet N, Bouvier N, Legendre C, Gilleron J, Codogno P, Beaune P et al. Autophagy protects renal tubular cells against cyclosporine toxicity. Autophagy 2008; 4: 783–791.

    Article  CAS  Google Scholar 

  42. Guertin DA, Sabatini DM . Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9–22.

    Article  CAS  Google Scholar 

  43. Ciechomska I, Pyrzynska B, Kazmierczak P, Kaminska B . Inhibition of Akt kinase signalling and activation of Forkhead are indispensable for upregulation of FasL expression in apoptosis of glioma cells. Oncogene 2003; 22: 7617–7627.

    Article  CAS  Google Scholar 

  44. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007; 6: 458–471.

    Article  CAS  Google Scholar 

  45. Liu HY, Han J, Cao SY, Hong T, Zhuo D, Shi J et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem 2009; 284: 31484–31492.

    Article  CAS  Google Scholar 

  46. Ge P, Luo Y, Fu S, Ji X, Ling F . Autophagy: a strategy for malignant gliomas' resistance to therapy. Med Hypotheses 2009; 73: 45–47.

    Article  Google Scholar 

  47. Chen S, Rehman SK, Zhang W, Wen A, Yao L, Zhang J . Autophagy is a therapeutic target in anticancer drug resistance. Biochim Biophys Acta 2010; 1806: 220–229.

    CAS  PubMed  Google Scholar 

  48. Ciechomska IA, Goemans CG, Tolkovsky AM . Molecular links between autophagy and apoptosis. Methods Mol Biol 2008; 445: 175–193.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Aviva M. Tolkovsky for her critical review of the manuscript. This work was supported by a grant N N301 092036 from The Polish Ministry of Science and Higher Education (IC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I A Ciechomska.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciechomska, I., Gabrusiewicz, K., Szczepankiewicz, A. et al. Endoplasmic reticulum stress triggers autophagy in malignant glioma cells undergoing cyclosporine A-induced cell death. Oncogene 32, 1518–1529 (2013). https://doi.org/10.1038/onc.2012.174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.174

Keywords

This article is cited by

Search

Quick links