Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Established and new mouse models reveal E2f1 and Cdk2 dependency of retinoblastoma, and expose effective strategies to block tumor initiation

Abstract

RB+/− individuals develop retinoblastoma and, subsequently, many other tumors. The Rb relatives p107 and p130 protect the tumor-resistant Rb−/− mouse retina. Determining the mechanism underlying this tumor suppressor function may expose novel strategies to block Rb pathway cancers. p107/p130 are best known as E2f inhibitors, but here we implicate E2f-independent Cdk2 inhibition as the critical p107 tumor suppressor function in vivo. Like p107 loss, deleting p27 or inactivating its Cdk inhibitor (CKI) function (p27CK−) cooperated with Rb loss to induce retinoblastoma. Genetically, p107 behaved like a CKI because inactivating Rb and one allele each of p27 and p107 was tumorigenic. Although Rb loss induced canonical E2f targets, unexpectedly p107 loss did not further induce these genes, but instead caused post-transcriptional Skp2 induction and Cdk2 activation. Strikingly, Cdk2 activity correlated with tumor penetrance across all the retinoblastoma models. Therefore, Rb restrains E2f, but p107 inhibits cross talk to Cdk. While removing either E2f2 or E2f3 genes had little effect, removing only one E2f1 allele blocked tumorigenesis. More importantly, exposing retinoblastoma-prone fetuses to small molecule inhibitors of E2f (HLM006474) or Cdk (R547) for merely 1 week dramatically inhibited subsequent tumorigenesis in adult mice. Protection was achieved without disrupting normal proliferation. Thus, exquisite sensitivity of the cell-of-origin to E2f and Cdk activity can be exploited to prevent Rb pathway-induced cancer in vivo without perturbing normal cell division. These data suggest that E2f inhibitors, never before tested in vivo, or CKIs, largely disappointing as therapeutics, may be effective preventive agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cobrinik D . Pocket proteins and cell cycle control. Oncogene 2005; 24: 2796–2809.

    Article  CAS  Google Scholar 

  2. Dimova DK, Dyson NJ . The E2F transcriptional network: old acquaintances with new faces. Oncogene 2005; 24: 2810–2826.

    Article  CAS  Google Scholar 

  3. Chen D, Pacal M, Wenzel PL, Knoepfler PS, Leone G, Bremner R . Division and apoptosis of E2f-deficient retinal progenitors. Nature 2009; 462: 925.

    Article  CAS  Google Scholar 

  4. Chong JL, Wenzel PL, Saenz-Robles MT, Nair V, Ferrey A, Hagan JP et al. E2f1-3 switch from activators in progenitor cells to repressors in differentiating cells. Nature 2009; 462: 930–934.

    Article  CAS  Google Scholar 

  5. Chen D, Opavsky R, Pacal M, Tanimoto N, Wenzel P, Seeliger MW et al. Rb-Mediated Neuronal Differentiation through Cell-Cycle-Independent Regulation of E2f3a. PLoS Biol 2007; 5: e179.

    Article  Google Scholar 

  6. Tsai KY, Hu Y, Macleod KF, Crowley D, Yamasaki L, Jacks T . Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol Cell 1998; 2: 293–304.

    Article  CAS  Google Scholar 

  7. Ziebold U, Reza T, Caron A, Lees JA . E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes Dev 2001; 15: 386–391.

    Article  CAS  Google Scholar 

  8. McClellan KA, Ruzhynsky VA, Douda DN, Vanderluit JL, Ferguson KL, Chen D et al. Unique requirement for Rb/E2F3 in neuronal migration: evidence for cell cycle-independent functions. Mol Cell Biol 2007; 27: 4825–4843.

    Article  CAS  Google Scholar 

  9. Malumbres M, Barbacid M . Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009; 9: 153–166.

    Article  CAS  Google Scholar 

  10. Binne UK, Classon MK, Dick FA, Wei W, Rape M, Kaelin Jr WG et al. Retinoblastoma protein and anaphase-promoting complex physically interact and functionally cooperate during cell-cycle exit. Nat Cell Biol 2007; 9: 225–232.

    Article  CAS  Google Scholar 

  11. Ji P, Jiang H, Rekhtman K, Bloom J, Ichetovkin M, Pagano M et al. An Rb-Skp2-p27 pathway mediates acute cell cycle inhibition by Rb and is retained in a partial-penetrance Rb mutant. Mol Cell 2004; 16: 47–58.

    Article  CAS  Google Scholar 

  12. Wang H, Bauzon F, Ji P, Xu X, Sun D, Locker J et al. Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1+/− mice. Nat Genet 2010; 42: 83–88.

    Article  CAS  Google Scholar 

  13. Rodier G, Makris C, Coulombe P, Scime A, Nakayama K, Nakayama KI et al. p107 inhibits G1 to S phase progression by down-regulating expression of the F-box protein Skp2. J Cell Biol 2005; 168: 55–66.

    Article  CAS  Google Scholar 

  14. Castano E, Kleyner Y, Dynlacht BD . Dual cyclin-binding domains are required for p107 to function as a kinase inhibitor. Mol Cell Biol 1998; 18: 5380–5391.

    Article  CAS  Google Scholar 

  15. Chibazakura T, McGrew SG, Cooper JA, Yoshikawa H, Roberts JM . Regulation of cyclin-dependent kinase activity during mitotic exit and maintenance of genome stability by p21, p27, and p107. Proc Natl Acad Sci USA 2004; 101: 4465–4470.

    Article  CAS  Google Scholar 

  16. Balmer A, Zografos L, Munier F . Diagnosis and current management of retinoblastoma. Oncogene 2006; 25: 5341–5349.

    Article  CAS  Google Scholar 

  17. Robanus-Maandag E, Dekker M, van der Valk M, Carrozza ML, Jeanny JC, Dannenberg JH et al. p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev 1998; 12: 1599–1609.

    Article  CAS  Google Scholar 

  18. Chen D, Livne-Bar I, Vanderluit JL, Slack RS, Agochiya M, Bremner R . Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. Cancer Cell 2004; 5: 539–551.

    Article  CAS  Google Scholar 

  19. MacPherson D, Sage J, Kim T, Ho D, McLaughlin ME, Jacks T . Cell type-specific effects of Rb deletion in the murine retina. Genes Dev 2004; 18: 1681–1694.

    Article  CAS  Google Scholar 

  20. Dannenberg JH, Schuijff L, Dekker M, van der Valk M, te Riele H . Tissue-specific tumor suppressor activity of retinoblastoma gene homologs p107 and p130. Genes Dev 2004; 18: 2952–2962.

    Article  CAS  Google Scholar 

  21. Zhang J, Schweers B, Dyer MA . The First Knockout Mouse Model of Retinoblastoma. Cell Cycle 2004; 3: 952–959.

    CAS  PubMed  Google Scholar 

  22. Lara MF, Garcia-Escudero R, Ruiz S, Santos M, Moral M, Martinez-Cruz AB et al. Gene profiling approaches help to define the specific functions of retinoblastoma family in epidermis. Mol Carcinog 2008; 47: 209–221.

    Article  CAS  Google Scholar 

  23. Lara MF, Santos M, Ruiz S, Segrelles C, Moral M, Martinez-Cruz AB et al. p107 acts as a tumor suppressor in pRb-deficient epidermis. Mol Carcinog 2008; 47: 105–113.

    Article  CAS  Google Scholar 

  24. Hurford Jr RK, Cobrinik D, Lee MH, Dyson N . pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev 1997; 11: 1447–1463.

    Article  CAS  Google Scholar 

  25. Black EP, Huang E, Dressman H, Rempel R, Laakso N, Asa SL et al. Distinct gene expression phenotypes of cells lacking Rb and Rb family members. Cancer Res 2003; 63: 3716–3723.

    CAS  PubMed  Google Scholar 

  26. Chu IM, Hengst L, Slingerland JM . The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 2008; 8: 253–267.

    Article  CAS  Google Scholar 

  27. Besson A, Hwang HC, Cicero S, Donovan SL, Gurian-West M, Johnson D et al. Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev 2007; 21: 1731–1746.

    Article  CAS  Google Scholar 

  28. Santamaria D, Barriere C, Cerqueira A, Hunt S, Tardy C, Newton K et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 2007; 448: 811–815.

    Article  CAS  Google Scholar 

  29. DePinto W, Chu XJ, Yin X, Smith M, Packman K, Goelzer P et al. In vitro and in vivo activity of R547: a potent and selective cyclin-dependent kinase inhibitor currently in phase I clinical trials. Mol Cancer Ther 2006; 5: 2644–2658.

    Article  CAS  Google Scholar 

  30. Malumbres M, Pevarello P, Barbacid M, Bischoff JR . CDK inhibitors in cancer therapy: what is next? Trends Pharmacol Sci 2008; 29: 16–21.

    Article  CAS  Google Scholar 

  31. Bandara LR, Girling R, La Thangue NB . Apoptosis induced in mammalian cells by small peptides that functionally antagonize the Rb-regulated E2F transcription factor. Nat Biotechnol 1997; 15: 896–901.

    Article  CAS  Google Scholar 

  32. Fabbrizio E, Le Cam L, Polanowska J, Kaczorek M, Lamb N, Brent R et al. Inhibition of mammalian cell proliferation by genetically selected peptide aptamers that functionally antagonize E2F activity. Oncogene 1999; 18: 4357–4363.

    Article  CAS  Google Scholar 

  33. Montigiani S, Muller R, Kontermann RE . Inhibition of cell proliferation and induction of apoptosis by novel tetravalent peptides inhibiting DNA binding of E2F. Oncogene 2003; 22: 4943–4952.

    Article  CAS  Google Scholar 

  34. Ma Y, Kurtyka CA, Boyapalle S, Sung SS, Lawrence H, Guida W et al. A small-molecule E2F inhibitor blocks growth in a melanoma culture model. Cancer Res 2008; 68: 6292–6299.

    Article  CAS  Google Scholar 

  35. Classon M, Salama S, Gorka C, Mulloy R, Braun P, Harlow E . Combinatorial roles for pRB, p107, and p130 in E2F-mediated cell cycle control. Proc Natl Acad Sci USA 2000; 97: 10820–10825.

    Article  CAS  Google Scholar 

  36. Chicas A, Wang X, Zhang C, McCurrach M, Zhao Z, Mert O et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 2010; 17: 376–387.

    Article  CAS  Google Scholar 

  37. Xu M, Sheppard KA, Peng CY, Yee AS, Piwnica-Worms H . Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation. Mol Cell Biol 1994; 14: 8420–8431.

    Article  CAS  Google Scholar 

  38. Dynlacht BD, Flores O, Lees JA, Harlow E . Differential regulation of E2F transactivation by cyclin/cdk2 complexes. Genes Dev 1994; 8: 1772–1786.

    Article  CAS  Google Scholar 

  39. Lee EY, Cam H, Ziebold U, Rayman JB, Lees JA, Dynlacht BD . E2F4 loss suppresses tumorigenesis in Rb mutant mice. Cancer Cell 2002; 2: 463–472.

    Article  CAS  Google Scholar 

  40. Brugarolas J, Bronson RT, Jacks T . p21 is a critical CDK2 regulator essential for proliferation control in Rb-deficient cells. J Cell Biol 1998; 141: 503–514.

    Article  CAS  Google Scholar 

  41. Park MS, Rosai J, Nguyen HT, Capodieci P, Cordon-Cardo C, Koff A . p27 and Rb are on overlapping pathways suppressing tumorigenesis in mice. Proc Natl Acad Sci USA 1999; 96: 6382–6387.

    Article  CAS  Google Scholar 

  42. Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S et al. CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 1998; 12: 2899–2911.

    Article  CAS  Google Scholar 

  43. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA . Effects of an Rb mutation in the mouse. Nature 1992; 359: 295–300.

    Article  CAS  Google Scholar 

  44. Buttitta LA, Katzaroff AJ, Perez CL, de la Cruz A, Edgar BA . A double-assurance mechanism controls cell cycle exit upon terminal differentiation in Drosophila. Dev Cell 2007; 12: 631–643.

    Article  CAS  Google Scholar 

  45. Kelloff GJ, Lippman SM, Dannenberg AJ, Sigman CC, Pearce HL, Reid BJ et al. Progress in chemoprevention drug development: the promise of molecular biomarkers for prevention of intraepithelial neoplasia and cancer--a plan to move forward. Clin Cancer Res 2006; 12: 3661–3697.

    Article  CAS  Google Scholar 

  46. Lindor NM, McMaster ML, Lindor CJ, Greene MH . Concise handbook of familial cancer susceptibility syndromes - second edition. J Natl Cancer Inst Monogr 2008; 38: 1–93.

    Google Scholar 

  47. Ng AK, Kenney LB, Gilbert ES, Travis LB . Secondary malignancies across the age spectrum. Semin Radiat Oncol 2010; 20: 67–78.

    Article  Google Scholar 

  48. Yu CL, Tucker MA, Abramson DH, Furukawa K, Seddon JM, Stovall M et al. Cause-specific mortality in long-term survivors of retinoblastoma. J Natl Cancer Inst 2009; 101: 581–591.

    Article  Google Scholar 

  49. Padmakumar VC, Aleem E, Berthet C, Hilton MB, Kaldis P . Cdk2 and Cdk4 activities are dispensable for tumorigenesis caused by the loss of p53. Mol Cell Biol 2009; 29: 2582–2593.

    Article  CAS  Google Scholar 

  50. Martin A, Odajima J, Hunt SL, Dubus P, Ortega S, Malumbres M et al. Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27(Kip1) and p21(Cip1). Cancer Cell 2005; 7: 591–598.

    Article  CAS  Google Scholar 

  51. Tetsu O, McCormick F . Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 2003; 3: 233–245.

    Article  CAS  Google Scholar 

  52. Boquoi A, Chen T, Enders GH . Chemoprevention of mouse intestinal tumorigenesis by the cyclin-dependent kinase inhibitor SNS-032. Cancer Prev Res (Phila) 2009; 2: 800–806.

    Article  CAS  Google Scholar 

  53. Conkrite K, Sundby M, Mukai S, Thomson JM, Mu D, Hammond SM et al. miR-1792 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev 2011; 25: 1734–1745.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Arnaud Besson and James Roberts for sharing p27CK–/CK– mice, and Fred Dick, Gustavo Leone and Philippe Monnier for comments. This project was funded by grants to RB from the Canadian Institutes for Health Research (CIHR), Foundation Fighting Blindness Canada, Ontario Institute for Cancer Research through funding provided by the Government of Ontario and the Terry Fox Research Institute. MS, MA and SRM were supported in part by fellowships from a CIHR training program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Chen or R Bremner.

Ethics declarations

Competing interests

There is potential conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sangwan, M., McCurdy, S., Livne-bar, I. et al. Established and new mouse models reveal E2f1 and Cdk2 dependency of retinoblastoma, and expose effective strategies to block tumor initiation. Oncogene 31, 5019–5028 (2012). https://doi.org/10.1038/onc.2011.654

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.654

Keywords

This article is cited by

Search

Quick links