Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MicroRNA-193a represses c-kit expression and functions as a methylation-silenced tumor suppressor in acute myeloid leukemia

Abstract

Aberrant activation of c-kit proto-oncogene contributes to abnormal cell proliferation by altering the tyrosine kinase signaling and constitutes a crucial impetus for leukemogenesis. Epigenetic silencing of tumor-suppressive microRNAs (miRNAs) is a key oncogenic mechanism for the activation of oncogenes in tumors. In this study, several miRNAs potentially binding to the 3′-untranslated region of human c-kit mRNA were screened by luciferase reporter assays. Among these miRNAs, miR-193a was embedded in a CpG island and epigenetically repressed by promoter hypermethylation in acute myeloid leukemia (AML) cell lines and primary AML blasts, but not in normal bone marrow cells. Importantly, miR-193a levels were inversely correlated with c-kit levels measured in 9 leukemia cell lines and 27 primary AML samples. Restoring miR-193a expression in AML cells harboring c-kit mutation and/or overexpression, either by synthetic miR-193a transfection or by DNA hypomethylating agent 5-azacytidine (5-aza) treatment, resulted in a significant reduction in c-kit expression at both RNA and protein levels and inhibition of cell growth. The growth-inhibitory activity of miR-193a was associated with apoptosis and granulocytic differentiation. Moreover, 5-aza-induced c-kit reduction could be partially blocked by miR-193a inhibitor, leading to a reversal of antiproliferative and proapoptotic effects of 5-aza. These data reveal a critical role for methylation-repressed miR-193a in myeloid leukemogenesis and the therapeutic promise of upregulating miR-193a expression for c-kit-positive AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ambros V . (2004). The functions of animal microRNAs. Nature 431: 350–355.

    Article  CAS  PubMed  Google Scholar 

  • Agrawal S, Unterberg M, Koschmieder S, zur Stadt U, Brunnberg U, Verbeek W et al. (2007). DNA methylation of tumor suppressor genes in clinical remission predicts the relapse risk in acute myeloid leukemia. Cancer Res 67: 1370–1377.

    Article  CAS  PubMed  Google Scholar 

  • Agirre X, Vilas-Zornoza A, Jiménez-Velasco A, Martin-Subero JI, Cordeu L, Gárate L et al. (2009). Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 69: 4443–4453.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. (1985). Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 103: 620–625.

    Article  CAS  PubMed  Google Scholar 

  • Berg T, Guo Y, Abdelkarim M, Fliegauf M, Lübbert M . (2007). Reversal of p15/INK4b hypermethylation in AML1/ETO-positive and -negative myeloid leukemia cell lines. Leuk Res 31: 497–506.

    Article  CAS  PubMed  Google Scholar 

  • Blume-Jensen P, Hunter T . (2001). Oncogenic kinase signalling. Nature 411: 355–365.

    Article  CAS  PubMed  Google Scholar 

  • Boissel N, Leroy H, Brethon B, Philippe N, de Botton S, Auvrignon A et al. (2006). Incidence and prognostic impact of c-kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 20: 965–970.

    CAS  PubMed  Google Scholar 

  • Bueno MJ, Pérez de Castro I, Gómez de Cedrón M, Santos J, Calin GA, Cigudosa JC et al. (2008). Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 13: 496–506.

    Article  CAS  PubMed  Google Scholar 

  • Beghini A, Ripamonti CB, Cairoli R, Cazzaniga G, Colapietro P, Elice F et al. (2004). KIT activating mutations: incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. Haematologica 89: 920–925.

    CAS  PubMed  Google Scholar 

  • Cairoli R, Beghini A, Grillo G, Nadali G, Elice F, Ripamonti CB et al. (2006). Prognostic impact of c-kit mutations in core binding factor leukemias: an Italian retrospective study. Blood 107: 3463–3468.

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Fu H, Feng J, Zhu J, Tie Y, Xing R et al. (2007). The construction of miRNA expression library for human. Prog Biochem Biophys 34: 389–394.

    CAS  Google Scholar 

  • Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S et al. (2008). Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68: 5049–5058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    Article  CAS  PubMed  Google Scholar 

  • Flotho C, Claus R, Batz C, Schneider M, Sandrock I, Ihde S et al. (2009). The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia 23: 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  • Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F et al. (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102: 18081–18086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabbri M, Garzon R, Andreeff M, Kantarjian HM, Garcia-Manero G, Calin GA . (2008). MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia 22: 1095–1105.

    Article  CAS  PubMed  Google Scholar 

  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP . (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27: 91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garzon R, Heaphy CE, Havelange V, Fabbri M, Volinia S, Tsao T et al. (2009). MicroRNA 29b functions in acute myeloid leukemia. Blood 114: 5331–5341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E et al. (2009). MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113: 6411–6418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidel F, Cortes J, Rücker FG, Aulitzky W, Letvak L, Kindler T et al. (2007). Results of a multicenter phase II trial for older patients with c-Kit-positive acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (HR-MDS) using low-dose Ara-C and Imatinib. Cancer 109: 907–914.

    Article  CAS  PubMed  Google Scholar 

  • Jacquel A, Colosetti P, Grosso S, Belhacene N, Puissant A, Marchetti S et al. (2007). Apoptosis and erythroid differentiation triggered by Bcr-Abl inhibitors in CML cell lines are fully distinguishable processes that exhibit different sensitivity to caspase inhibition. Oncogene 26: 2445–2458.

    Article  CAS  PubMed  Google Scholar 

  • Jiao B, Wu CF, Liang Y, Chen HM, Xiong SM, Chen B et al. (2009). AML1-ETO9a is correlated with C-KIT overexpression/mutations and indicates poor disease outcome in t(8;21) acute myeloid leukemia-M2. Leukemia 23: 1598–1604.

    Article  CAS  PubMed  Google Scholar 

  • Kindler T, Breitenbuecher F, Marx A, Beck J, Hess G, Weinkauf B et al. (2004). Efficacy and safety of imatinib in adult patients with c-kit-positive acute myeloid leukemia. Blood 103: 3644–3654.

    Article  CAS  PubMed  Google Scholar 

  • Kozaki KI, Imoto I, Mogi S, Omura K, Inazawa1 J . (2008). Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 68: 2094–2105.

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  • Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D et al. (2008). A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105: 13556–13561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LC, Dahiya R . (2002). MethPrimer: designing primers for methylation PCRs. Bioinformatics 18: 1427–1431.

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J et al. (2008). miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 36: 5391–5404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennartsson J, Jelacic T, Linnekin D, Shivakrupa R . (2005). Normal and oncogenic forms of the receptor tyrosine kinase kit. Stem Cells 23: 16–43.

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N et al. (2009). Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9: 293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larizza L, Magnani I, Beghini A . (2005). The Kasumi-1 cell line: a t(8;21)-kit mutant model for acute myeloid leukemia. Leuk Lymphoma 46: 247–255.

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Wu LC, Pang J, Santhanam R, Schwind S, Wu YZ et al. (2010). Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell 17: 333–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcucci G, Radmacher MD, Maharry K, Mrózek K, Ruppert AS, Paschka P et al. (2008). MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 358: 1919–1928.

    Article  CAS  PubMed  Google Scholar 

  • Osada H, Takahashi T . (2007). MicroRNAs in biological processes and carcinogenesis. Carcinogenesis 28: 2–12.

    Article  CAS  PubMed  Google Scholar 

  • Paschka P, Marcucci G, Ruppert AS, Mrózek K, Chen H, Kittles RA et al. (2006). Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol 24: 3904–3911.

    Article  CAS  PubMed  Google Scholar 

  • Reilly JT . (2003). Receptor tyrosine kinases in normal and malignant haematopoiesis. Blood Rev 17: 241–248.

    Article  PubMed  Google Scholar 

  • Roman-Gomez J, Agirre X, Jiménez-Velasco A, Arqueros V, Vilas-Zornoza A, Rodriguez-Otero P et al. (2009). Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol 27: 1316–1322.

    Article  CAS  PubMed  Google Scholar 

  • Renneville A, Roumier C, Biggio V, Nibourel O, Boissel N, Fenaux P et al. (2008). Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia 22: 915–931.

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA et al. (2006). Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9: 435–443.

    Article  CAS  PubMed  Google Scholar 

  • Schnittger S, Kohl TM, Haferlach T, Kern W, Hiddemann W, Spiekermann K et al. (2006). KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood 107: 1791–1799.

    Article  CAS  PubMed  Google Scholar 

  • Tenen DG . (2003). Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 3: 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Zhou GB, Yin T, Chen B, Shi JY, Liang WX et al. (2005). AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci USA 102: 1104–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youssef EM, Chen XQ, Higuchi E, Kondo Y, Garcia-Manero G, Lotan R et al. (2004). Hypermethylation and silencing of the putative tumor suppressor Tazarotene-induced gene 1 in human cancers. Cancer Res 64: 2411–2417.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y Ding, Y-Y Xu, N Wang, C-W Xu, M Li, M-X Chen and W-D Han for excellent technical assistance. We also thank Professor X-F Zheng and H-J Fu from Beijing Institute of Radiation Medicine, China, for presenting the modified pGL3-control plasmid and miRNA expression plasmids. This work was supported by the National Natural Science Foundation of China (nos 81000221, 90919044 and 30971297) and the National 973 Project of China (no. 2005CB522400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Yu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, XN., Lin, J., Li, YH. et al. MicroRNA-193a represses c-kit expression and functions as a methylation-silenced tumor suppressor in acute myeloid leukemia. Oncogene 30, 3416–3428 (2011). https://doi.org/10.1038/onc.2011.62

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.62

Keywords

This article is cited by

Search

Quick links