Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MicroRNA-520e suppresses growth of hepatoma cells by targeting the NF-κB-inducing kinase (NIK)

Abstract

MicroRNAs (miRNAs) are small, non-coding RNAs that can act as oncogenes or tumor suppressor genes in human cancer. Emerging evidence indicates that deregulation of miRNAs contributes to the hepatocarcinogenesis. In the present study, we demonstrated that the levels of miR-520e were dramatically decreased in examined hepatoma cell lines and clinical hepatocellular carcinoma (HCC) tissues. Moreover, we found that DNA hypermethylation in the upstream region of miR-520e resulted in the downregulation of miR-520e. Next, we demonstrated that introduction of miR-520e dramatically suppressed the growth of hepatoma cells in vitro and in vivo, whereas silencing the expression of miR-520e by anti-miR-520e resulted in a promoted cell proliferation, suggesting that miR-520e may be a novel tumor suppressor. Further studies revealed that NF-κB-inducing kinase (NIK) was one of the direct target genes of miR-520e, as miR-520e directly bound to the 3′untranslated region of NIK, which reduced the expression of NIK at the levels of mRNA and protein. Moreover, silencing of NIK was able to inhibit the growth of hepatoma cells, similar to the effect of miR-520e overexpression on growth of hepatoma cells. Meanwhile, the knockdown of NIK expression reversed the enhanced proliferation mediated by anti-miR-520e. In addition, miR-520e significantly decreased the phosphorylation of ERK1/2 (p-ERK1/2) and depressed the transcriptional activity and nuclear translocation of nuclear factor κB (NF-κB) (p65). These results suggest that miR-520e suppresses the growth of hepatoma cells by targeting NIK involving the NIK/p-ERK1/2/NF-κB signaling pathway. Finally, we showed that the intratumoral injection with miR-520e was able to directly repress the growth of hepatoma cells in the nude mice. Thus, our finding provides new insight into the mechanism of hepatocarcinogenesis, indicating a therapeutic potential of miR-520e in the treatment of HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  Google Scholar 

  • Bartel DP, Chen CZ . (2004). Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5: 396–400.

    Article  CAS  Google Scholar 

  • Brown KD, Claudio E, Siebenlist U . (2008). The roles of the classical and alternative nuclear factor-kappaB pathways: potential implications for autoimmunity and rheumatoid arthritis. Arthritis Res Ther 10: 212.

    Article  Google Scholar 

  • Calin GA, Croce CM . (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857–866.

    Article  CAS  Google Scholar 

  • Calin GA, Croce CM . (2007). Chromosomal rearrangements and microRNAs: a new cancer link with clinical implications. J Clin Invest 117: 2059–2066.

    Article  CAS  Google Scholar 

  • Chen CZ, Li L, Lodish HF, Bartel DP . (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303: 83–86.

    Article  CAS  Google Scholar 

  • Chen KH, Weng MS, Lin JK . (2007). Tangeretin suppresses IL-1beta-induced cyclooxygenase (COX)-2 expression through inhibition of p38 MAPK, JNK, and AKT activation in human lung carcinoma cells. Biochem Pharmacol 73: 215–227.

    Article  CAS  Google Scholar 

  • Croce CM, Calin GA . (2005). miRNAs, cancer, and stem cell division. Cell 122: 6–7.

    Article  CAS  Google Scholar 

  • Cui W, Zhang Y, Hu N, Shan C, Zhang S, Zhang W et al (2010). miRNA-520b and miR-520e sensitize breast cancer cells to complement attack via directly targeting 3′UTR of CD46. Cancer Biol Ther 10: 232–241.

    Article  CAS  Google Scholar 

  • Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S et al (2008). Methylation mediated silencing of microRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68: 5049–5058.

    Article  CAS  Google Scholar 

  • Dhawan P, Richmond A . (2002). A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. J Biol Chem 277: 7920–7928.

    Article  CAS  Google Scholar 

  • El-Serag HB, Rudolph KL . (2007). Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132: 2557–2576.

    Article  CAS  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E et al (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104: 15805–15810.

    Article  CAS  Google Scholar 

  • Farazi PA, DePinho RA . (2006). Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6: 674–687.

    Article  CAS  Google Scholar 

  • Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L et al (2007). Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12: 457–466.

    Article  CAS  Google Scholar 

  • Foehr ED, Bohuslav J, Chen LF, DeNoronha C, Geleziunas R, Lin X et al (2000). The NF-kappa B-inducing kinase induces PC12 cell differentiation and prevents apoptosis. J Biol Chem 275: 34021–34024.

    Article  CAS  Google Scholar 

  • Gessi M, Zur Muehlen A, Lauriola L, Gardiman MP, Giangaspero F, Pietsch T . (2011). TP53, beta-Catenin and c-myc/N-myc status in embryonal tumours with ependymoblastic rosettes. Neuropathol Appl Neurobiol 37: 406–413.

    Article  CAS  Google Scholar 

  • Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG et al (2007). Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 67: 6092–6099.

    Article  CAS  Google Scholar 

  • Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce CM et al (2008). MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 12: 2189–2204.

    Article  CAS  Google Scholar 

  • Gregory RI, Shiekhattar R . (2005). MicroRNA biogenesis and cancer. Cancer Res 65: 3509–3512.

    Article  CAS  Google Scholar 

  • Hayden MS, Ghosh S . (2008). Shared principles in NF-kappaB signaling. Cell 132: 344–362.

    Article  CAS  Google Scholar 

  • Ji J, Wang XW . (2009). New kids on the block: diagnostic and prognostic microRNAs in hepatocellular carcinoma. Cancer Biol Ther 8: 1686–1693.

    Article  Google Scholar 

  • Jiang J, Gusev Y, Aderca I, Mettler TA, Nagorney DM, Brackett DJ et al (2008). Association of microRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res 14: 419–427.

    Article  CAS  Google Scholar 

  • Kent OA, Mendell JT . (2006). A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25: 6188–6196.

    Article  CAS  Google Scholar 

  • Kim VN . (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6: 376–385.

    Article  CAS  Google Scholar 

  • Kim VN, Nam JW . (2006). Genomics of microRNA. Trends Genet 22: 165–173.

    Article  CAS  Google Scholar 

  • Li M, Lee KF, Lu Y, Clarke I, Shih D, Eberhart C et al (2009a). Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 16: 533–546.

    Article  CAS  Google Scholar 

  • Li Q, Wang G, Shan JL, Yang ZX, Wang HZ, Feng J et al (2010). MicroRNA-224 is upregulated in HepG2 cells and involved in cellular migration and invasion. J Gastroenterol Hepatol 25: 164–171.

    Article  Google Scholar 

  • Li S, Fu H, Wang Y, Tie Y, Xing R, Zhu J et al (2009b). MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. Hepatology 49: 1194–1202.

    Article  CAS  Google Scholar 

  • Liang L, Wong CM, Ying Q, Fan DN, Huang S, Ding J et al (2010). MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology 52: 1731–1740.

    Article  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  Google Scholar 

  • Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F et al (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67: 1424–1429.

    Article  CAS  Google Scholar 

  • Lyle R, Watanabe D, te Vruchte D, Lerchner W, Smrzka OW, Wutz A et al (2000). The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet 25: 19–21.

    Article  CAS  Google Scholar 

  • Mercatelli N, Coppola V, Bonci D, Miele F, Costantini A, Guadagnoli M et al (2008). The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One 3: e4029.

    Article  Google Scholar 

  • Nishina T, Yamaguchi N, Gohda J, Semba K, Inoue J . (2009). NIK is involved in constitutive activation of the alternative NF-kappaB pathway and proliferation of pancreatic cancer cells. Biochem Biophys Res Commun 388: 96–101.

    Article  CAS  Google Scholar 

  • Nojima M, Suzuki H, Toyota M, Watanabe Y, Maruyama R, Sasaki S et al (2007). Frequent epigenetic inactivation of SFRP genes and constitutive activation of Wnt signaling in gastric cancer. Oncogene 26: 4699–4713.

    Article  CAS  Google Scholar 

  • Rangaswami H, Bulbule A, Kundu GC . (2004). Nuclear factor-inducing kinase plays a crucial role in osteopontin-induced MAPK/IkappaBalpha kinase-dependent nuclear factor kappaB-mediated promatrix metalloproteinase-9 activation. J Biol Chem 279: 38921–38935.

    Article  CAS  Google Scholar 

  • Roux PP, Blenis J . (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68: 320–344.

    Article  CAS  Google Scholar 

  • Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA et al (2006). Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9: 435–443.

    Article  CAS  Google Scholar 

  • Sato H, Suzuki H, Toyota M, Nojima M, Maruyama R, Sasaki S et al (2007). Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis 28: 2459–2466.

    Article  CAS  Google Scholar 

  • Selaru FM, Olaru AV, Kan T, David S, Cheng Y, Mori Y et al (2009). MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 49: 1595–1601.

    Article  CAS  Google Scholar 

  • Shan C, Xu F, Zhang S, You J, You X, Qiu L et al (2010). Hepatitis B virus X protein promotes liver cell proliferation via a positive cascade loop involving arachidonic acid metabolism and p-ERK1/2. Cell Res 20: 563–575.

    Article  CAS  Google Scholar 

  • Xu T, Zhu Y, Xiong Y, Ge YY, Yun JP, Zhuang SM . (2009). MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology 50: 113–121.

    Article  CAS  Google Scholar 

  • Yamaguchi N, Ito T, Azuma S, Ito E, Honma R, Yanagisawa Y et al (2009). Constitutive activation of nuclear factor-kappaB is preferentially involved in the proliferation of basal-like subtype breast cancer cell lines. Cancer Sci 100: 1668–1674.

    Article  CAS  Google Scholar 

  • Ying SY, Lin SL . (2005). Intronic microRNAs. Biochem Biophys Res Commun 326: 515–520.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Basic Research Program of China (973 Program, No. 2009CB521702) and National Natural Science Foundation of China (No. 81071624).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L Ye or X Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Shan, C., Kong, G. et al. MicroRNA-520e suppresses growth of hepatoma cells by targeting the NF-κB-inducing kinase (NIK). Oncogene 31, 3607–3620 (2012). https://doi.org/10.1038/onc.2011.523

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.523

Keywords

This article is cited by

Search

Quick links