Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Homeodomain protein DLX4 counteracts key transcriptional control mechanisms of the TGF-β cytostatic program and blocks the antiproliferative effect of TGF-β

Abstract

The antiproliferative activity of transforming growth factor-β (TGF-β) is essential for maintaining normal tissue homeostasis and is lost in many types of tumors. Gene responses that are central to the TGF-β cytostatic program include activation of the cyclin-dependent kinase inhibitors, p15Ink4B and p21WAF1/Cip1, and repression of c-myc. These gene responses are tightly regulated by a repertoire of transcription factors that include Smad proteins and Sp1. The DLX4 homeobox patterning gene encodes a transcription factor that is absent from most normal adult tissues, but is expressed in a wide variety of malignancies, including lung, breast, prostate and ovarian cancers. In this study, we demonstrate that DLX4 blocks the antiproliferative effect of TGF-β. DLX4 inhibited TGF-β-mediated induction of p15Ink4B and p21WAF1/Cip1 expression. DLX4 bound and prevented Smad4 from forming complexes with Smad2 and Smad3, but not with Sp1. However, DLX4 also bound and inhibited DNA-binding activity of Sp1. In addition, DLX4 induced expression of c-myc independently of TGF-β/Smad signaling. The ability of DLX4 to counteract key transcriptional control mechanisms of the TGF-β cytostatic program could explain, in part, the resistance of tumors to the antiproliferative effect of TGF-β.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

Ab:

antibody

BMP:

bone morphogenetic protein

DBD:

DNA-binding domain

EMT:

epithelial-to-mesenchymal transition

F-Luc:

firefly luciferase

IP:

immunoprecipitation

R-Luc:

Renilla luciferase

R-Smad:

receptor-regulated Smad

TGF-β:

transforming growth factor-β

References

  • Abate-Shen C . (2002). Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer 2: 777–785.

    Article  CAS  Google Scholar 

  • Bello-DeOcampo D, Tindall DJ . (2003). TGF-β/Smad signaling in prostate cancer. Curr Drug Targets 4: 197–207.

    Article  CAS  Google Scholar 

  • Berghorn KA, Clark-Campbell PA, Han L, McGrattan M, Weiss RS, Roberson MS . (2006). Smad6 represses Dlx3 transcriptional activity through inhibition of DNA binding. J Biol Chem 281: 20357–20367.

    Article  CAS  Google Scholar 

  • Boogerd KJ, Wong LY, Christoffels VM, Klarenbeek M, Ruijter JM, Moorman AF et al. (2008). Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of connexin43. Cardiovasc Res 78: 485–493.

    Article  CAS  Google Scholar 

  • Chen CR, Kang Y, Siegel PM, Massagué J . (2002). E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell 110: 19–32.

    Article  CAS  Google Scholar 

  • Chiba S, Takeshita K, Imai Y, Kumano K, Kurokawa M, Masuda S et al. (2003). Homeoprotein DLX-1 interacts with Smad4 and blocks a signaling pathway from activin A in hematopoietic cells. Proc Natl Acad Sci USA 100: 15577–15582.

    Article  CAS  Google Scholar 

  • Coletta RD, Christensen K, Reichenberger KJ, Lamb J, Micomonaco D, Huang L et al. (2004). The Six1 homeoprotein stimulates tumorigenesis by reactivation of cyclin A1. Proc Natl Acad Sci USA 101: 6478–6483.

    Article  CAS  Google Scholar 

  • Deckers M, van Dinther M, Buijs J, Que I, Löwik C, van der Pluijm G et al. (2006). The tumor suppressor Smad4 is required for transforming growth factor-β-induced epithelial-to-mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66: 2202–2209.

    Article  CAS  Google Scholar 

  • Feng XH, Derynck R . (2005). Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 21: 659–693.

    Article  CAS  Google Scholar 

  • Feng XH, Liang YY, Liang M, Zhai W, Lin X . (2002). Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-β-mediated induction of the CDK inhibitor p15Ink4B. Mol Cell 9: 133–143.

    Article  CAS  Google Scholar 

  • Feng XH, Lin X, Derynck R . (2000). Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15Ink4B transcription in response to TGF-β. EMBO J 19: 5178–5193.

    Article  CAS  Google Scholar 

  • Francis-Thickpenny KM, Richardson DM, van Ee CC, Love DR, Winship IM, Baguley BC et al. (2001). Analysis of the transforming growth factor-β functional pathway in epithelial ovarian carcinoma. Br J Cancer 85: 687–691.

    Article  CAS  Google Scholar 

  • Gartel AL, Ye X, Goufman E, Shianov P, Hay N, Najmabadi F et al. (2001). Myc represses the p21WAF1/Cip1 promoter and interacts with Sp1/Sp3. Proc Natl Acad Sci USA 98: 4510–4515.

    Article  CAS  Google Scholar 

  • Gemma A, Takenoshita S, Hagiwara K, Okamoto A, Spillare EA, McMemamin MG et al. (1996). Molecular analysis of the cyclin-dependent kinase inhibitor genes p15INK4B/MTS2, p16INK4/MTS1, p18 and p19 in human cancer cell lines. Int J Cancer 68: 605–611.

    Article  CAS  Google Scholar 

  • Haga SB, Fu S, Karp JE, Ross DD, Williams DM, Hankins WD et al. (2000). BP1, a new homeobox gene, is frequently expressed in acute leukemias. Leukemia 14: 1867–1875.

    Article  CAS  Google Scholar 

  • Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E et al. (1996). DPC4, a candidate tumor suppressor at human chromosome 18q21.1. Science 271: 350–353.

    Article  CAS  Google Scholar 

  • Hara F, Samuel S, Liu J, Rosen D, Langley R, Naora H . (2007). A homeobox gene related to Drosophila Distal-less promotes ovarian tumorigenicity by inducing expression of vascular endothelial growth factor and fibroblast growth factor-2. Am J Pathol 170: 1594–1606.

    Article  CAS  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. (1998). Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512.

    Article  CAS  Google Scholar 

  • Hyman E, Kauraniemi P, Hautaniemi S, Wolf M, Mousses S, Rozenblum E et al. (2002). Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res 62: 6240–6245.

    CAS  PubMed  Google Scholar 

  • Kang Y, Chen CR, Massagué J . (2003). A self-enabling TGFβ response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 11: 915–926.

    Article  CAS  Google Scholar 

  • Korchynskyi O, ten Dijke P . (2002). Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem 277: 4883–4891.

    Article  CAS  Google Scholar 

  • Kusanagi K, Inoue H, Ishidou Y, Mishima H, Kawabata M, Miyazono K . (2000). Characterization of a bone morphogenetic protein-responsive Smad-binding element. Mol Cell Biol 11: 555–565.

    Article  CAS  Google Scholar 

  • Man YG, Fu SW, Schwartz A, Pinzone JJ, Simmens SJ, Berg PE . (2005). Expression of BP1, a novel homeobox gene, correlates with breast cancer progression and invasion. Breast Cancer Res Treat 90: 241–247.

    Article  CAS  Google Scholar 

  • Massagué J . (2008). TGF-β in cancer. Cell 134: 215–230.

    Article  Google Scholar 

  • Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J et al. (1995). Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268: 1336–1338.

    Article  CAS  Google Scholar 

  • McGinnis W, Krumlauf R . (1992). Homeobox genes and axial patterning. Cell 68: 283–302.

    Article  CAS  Google Scholar 

  • Moustakas A, Heldin CH . (2005). Non-Smad TGF-β signals. J Cell Science 118: 3573–3584.

    Article  CAS  Google Scholar 

  • Nagatake M, Takagi Y, Osada H, Uchida K, Mitsudomi T, Saji S et al. (1996). Somatic in vivo alterations of the DPC4 gene at 18q21 in human lung cancers. Cancer Res 56: 2718–2720.

    CAS  PubMed  Google Scholar 

  • Naora H, Yang YQ, Montz FJ, Seidman JD, Kurman RJ, Roden RB . (2001). A serologically identified tumor antigen encoded by a homeobox gene promotes growth of ovarian epithelial cells. Proc Natl Acad Sci USA 98: 4060–4065.

    Article  CAS  Google Scholar 

  • Panganiban G, Rubenstein JL . (2002). Developmental functions of the Distal-less/Dlx homeobox genes. Development 129: 4371–4386.

    CAS  Google Scholar 

  • Pardali K, Kurisaki A, Morén A, ten Dijke P, Kardassis D, Moustakas A . (2000). Role of Smad proteins and transcription factor Sp1 in p21Waf1/Cip1 regulation by transforming growth factor-β. J Biol Chem 275: 29244–29256.

    Article  CAS  Google Scholar 

  • Park GT, Morasso MI . (2002). Bone morphogenetic protein-2 (BMP-2) transactivates Dlx3 through Smad1 and Smad4: alternative mode for Dlx3 induction in mouse keratinocytes. Nucleic Acids Res 30: 515–522.

    Article  CAS  Google Scholar 

  • Petritsch C, Beug H, Balmain A, Oft M . (2000). TGF-β inhibits p70 S6 kinase via protein phosphatase 2A to induce G1 arrest. Genes Dev 14: 3093–3101.

    Article  CAS  Google Scholar 

  • Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E et al. (2000). Compromised HOXA5 function can limit p53 expression in human breast tumors. Nature 405: 974–978.

    Article  CAS  Google Scholar 

  • Reynisdóttir I, Polyak K, Iavarone A, Massagué J . (1995). Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β. Genes Dev 9: 1831–1845.

    Article  Google Scholar 

  • Samuel S, Naora H . (2005). Homeobox gene expression in cancer: insights from developmental regulation and deregulation. Eur J Cancer 41: 2428–2437.

    Article  CAS  Google Scholar 

  • Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, Weinstein CL et al. (1996). DPC4 gene in various tumor types. Cancer Res 56: 2527–2530.

    CAS  PubMed  Google Scholar 

  • Schwartz AM, Man YG, Rezaei MK, Simmens SJ, Berg PE . (2009). BP1, a homeoprotein, is significantly expressed in prostate adenocarcinoma and is concordant with prostatic intraepithelial neoplasia. Mod Pathol 22: 1–6.

    Article  CAS  Google Scholar 

  • Shen WF, Rozenfeld S, Kwong A, Köm ves LG, Lawrence HJ, Largman C . (1999). HOXA9 forms triple complexes with PBX2 and MEIS1 in myeloid cells. Mol Cell Biol 19: 3051–3061.

    Article  CAS  Google Scholar 

  • Shi Y, Massagué J . (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113: 685–700.

    Article  CAS  Google Scholar 

  • Siegel PM, Massagué J . (2003). Cytostatic and apoptotic actions of TGFβ in homeostasis and cancer. Nat Rev Cancer 3: 807–820.

    Article  CAS  Google Scholar 

  • Takenoshita S, Hagiwara K, Gemma A, Nagashima M, Ryberg D, Lindstedt BA et al. (1997). Absence of mutations in the transforming growth factor β type II receptor in sporadic lung cancers with microsatellite instability and rare H-ras1 alleles. Carcinogenesis 18: 1427–1429.

    Article  CAS  Google Scholar 

  • Takenoshita S, Mogi A, Tani M, Osawa H, Sunaga H, Kakegawa H et al. (1998). Absence of mutations in the analysis of coding sequences of the entire transforming growth factor-β type II receptor gene in sporadic human breast cancers. Oncol Rep 5: 367–371.

    CAS  PubMed  Google Scholar 

  • Tokunaga H, Lee DH, Kim IY, Wheeler TM, Lerner SP . (1999). Decreased expression of transforming growth factor β receptor type I is associated with poor prognosis in bladder transitional cell carcinoma patients. Clin Cancer Res 5: 2520–2525.

    CAS  PubMed  Google Scholar 

  • Tomida S, Yanagisawa K, Koshikawa K, Yatabe Y, Mitsudomi T, Osada H et al. (2007). Identification of a metastasis signature and the DLX4 homeobox protein as a regulator of metastasis by a combined transcriptome approach. Oncogene 26: 4600–4608.

    Article  CAS  Google Scholar 

  • Tournay O, Benezra R . (1996). Transcription of the dominant-negative helix-loop-helix protein Id1 is regulated by a protein complex containing the immediate-early response gene Egr-1. Mol Cell Biol 16: 2418–2430.

    Article  CAS  Google Scholar 

  • Wang D, Kanuma T, Mizunuma H, Takama F, Ibuki Y, Wake N et al. (2000). Analysis of specific gene mutations in the transforming growth factor β signal transduction pathway in human ovarian cancer. Cancer Res 60: 4507–4512.

    CAS  PubMed  Google Scholar 

  • Watanabe T, Wu TT, Catalano PJ, Ueki T, Satriano R, Haller DG et al. (2001). Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344: 1196–1206.

    Article  CAS  Google Scholar 

  • Williams TM, Williams ME, Heaton JH, Gelehrter TD, Innis JW . (2005). Group 13 HOX proteins interact with the MH2 domain of R-Smads and modulate Smad transcriptional activation functions independent of HOX DNA-binding capability. Nucleic Acids Res 33: 4475–4484.

    Article  CAS  Google Scholar 

  • Woodford-Richens KL, Rowan AJ, Gorman P, Halford S, Bicknell DC, Wasan HS et al. (2001). SMAD4 mutations in colorectal cancer probably occur before chromosomal instability but after divergence of the microsatellite instability pathway. Proc Natl Acad Sci USA 98: 9719–9723.

    Article  CAS  Google Scholar 

  • Yamada SD, Baldwin RL, Karlan BY . (1999). Ovarian carcinoma cell cultures are resistant to TGF-β1-mediated growth inhibition despite expression of functional receptors. Gynecol Oncol 75: 72–77.

    Article  CAS  Google Scholar 

  • Yang X, Ji X, Shi X, Cao X . (2000). Smad1 domains interacting with Hoxc-8 induce osteoblast differentiation. J Biol Chem 275: 1065–1072.

    Article  CAS  Google Scholar 

  • Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B et al. (1998). Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1: 611–617.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Schissler Foundation Fellowship (B Trinh), the Vietnam Education Foundation (B Trinh), the US Department of Defense grant W81XWH-06-1-0259 (H Naora) and the National Institutes of Health grant R01 CA141078 (H Naora). We thank Sabine Thonard for technical assistance, and Song Yi Ko, Gary Gallick, Michelle Barton, Janet Price, Peng Huang and Miles Wilkinson (MD Anderson Cancer Center) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Naora.

Ethics declarations

Competing interests

Dr Naora's work has been funded by the NIH and US Department of Defense. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trinh, B., Barengo, N. & Naora, H. Homeodomain protein DLX4 counteracts key transcriptional control mechanisms of the TGF-β cytostatic program and blocks the antiproliferative effect of TGF-β. Oncogene 30, 2718–2729 (2011). https://doi.org/10.1038/onc.2011.4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.4

Keywords

This article is cited by

Search

Quick links