Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation

Abstract

Sirtuin deacetylases and FOXO (Forkhead box, class O) transcription factors have important roles in many biological pathways, including cancer development. SIRT1 and SIRT2 deacetylate FOXO factors to regulate FOXO function. Because acetylation and ubiquitination both modify the ɛ-amino group of lysine residues, we investigated whether FOXO3 deacetylation by SIRT1 or SIRT2 facilitates FOXO3 ubiquitination and subsequent proteasomal degradation. We found that SIRT1 and SIRT2 promote FOXO3 poly-ubiquitination and degradation. Proteasome-inhibitor treatment prevented sirtuin-induced FOXO3 degradation, indicating that this process is proteasome dependent. In addition, we demonstrated that E3 ubiquitin ligase subunit Skp2 binds preferentially to deacetylated FOXO3. Overexpression of Skp2 caused poly-ubiquitination of FOXO3 and degradation, whereas knockdown of Skp2 increased the amount of FOXO3 protein. We also present evidence that SCF-Skp2 ubiquitinates FOXO3 directly in vitro. Furthermore, mutating four known acetylated lysine residues (K242, K259, K290 and K569) of FOXO3 into arginines to mimic deacetylated FOXO3 resulted in enhanced Skp2 binding but with inhibition of FOXO3 ubiquitination; this suggests that some or all of these four lysine residues are likely the sites for ubiquitination. In the livers of mice deficient in SIRT1, we detected increased expression of FOXO3, indicating SIRT1 regulates FOXO3 protein levels in vivo. Furthermore, we found that the elevation of SIRT1 and Skp2 expression in malignant PC3 and DU145 prostate cells is responsible for the downregulation of FOXO3 protein levels in these cells. Taken together, our data support the notion that deacetylation of FOXO3 by SIRT1 or SIRT2 facilitates Skp2-mediated FOXO3 poly-ubiquitination and proteasomal degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Arden KC . (2008). FOXO animal models reveal a variety of diverse roles for FOXO transcription factors. Oncogene 27: 2345–2350.

    Article  CAS  PubMed  Google Scholar 

  • Biggs III WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC . (1999). Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 96: 7421–7426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borra MT, O'Neill FJ, Jackson MD, Marshall B, Verdin E, Foltz KR et al. (2002). Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases. J Biol Chem 277: 12632–12641.

    Article  CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R . (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553.

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  • Chan CH, Lee SW, Wang J, Lin HK . (2010). Regulation of Skp2 expression and activity and its role in cancer progression. ScientificWorldJournal 10: 1001–1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P et al. (2003). Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100: 10794–10799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B et al. (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305: 390–392.

    Article  CAS  PubMed  Google Scholar 

  • Daitoku H, Hatta M, Matsuzaki H, Aratani S, Ohshima T, Miyagishi M et al. (2004). Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci USA 101: 10042–10047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dansen TB, Burgering BM . (2008). Unravelling the tumor-suppressive functions of FOXO proteins. Trends Cell Biol 18: 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Deng CX . (2009). SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci 5: 147–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Essers MA, Weijzen S, de Vries-Smits AM, Saarloos I, de Ruiter ND, Bos JL et al. (2004). FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 23: 4802–4812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnin MS, Donigian JR, Pavletich NP . (2001). Structure of the histone deacetylase SIRT2. Nat Struct Biol 8: 621–625.

    Article  CAS  PubMed  Google Scholar 

  • Fu W, Ma Q, Chen L, Li P, Zhang M, Ramamoorthy S et al. (2009). MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem 284: 13987–14000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Z, Tindall DJ . (2008). FOXOs, cancer and regulation of apoptosis. Oncogene 27: 2312–2319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuoka M, Daitoku H, Hatta M, Matsuzaki H, Umemura S, Fukamizu A . (2003). Negative regulation of forkhead transcription factor AFX (Foxo4) by CBP-induced acetylation. Int J Mol Med 12: 503–508.

    CAS  PubMed  Google Scholar 

  • Gross DN, van den Heuvel AP, Birnbaum MJ . (2008). The role of FoxO in the regulation of metabolism. Oncogene 27: 2320–2336.

    Article  CAS  PubMed  Google Scholar 

  • Haigis MC, Guarente LP . (2006). Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev 20: 2913–2921.

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka M, Inoue T, Toda T, Kimura N, Shirayoshi Y, Kamitani H et al. (2003). Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem Biophys Res Commun 309: 558–566.

    Article  CAS  PubMed  Google Scholar 

  • Ho KK, Myatt SS, Lam EW . (2008). Many forks in the path: cycling with FoxO. Oncogene 27: 2300–2311.

    Article  CAS  PubMed  Google Scholar 

  • Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY et al. (2004). IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117: 225–237.

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM et al. (2005). Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA 102: 1649–1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing E, Gesta S, Kahn CR . (2007). SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab 6: 105–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan M, Schallhorn A, Wurm FM . (1996). Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res 24: 596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabra N, Li Z, Chen L, Li B, Zhang X, Wang C et al. (2009). SirT1 is an inhibitor of proliferation and tumor formation in colon cancer. J Biol Chem 284: 18210–18217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein M, Hu D, Kerr EO, Tsuchiya M, Westman EA, Dang N et al. (2005). Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet 1: e69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein M, Kirkland KT, Fields S, Kennedy BK. . (2004). Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2: E296.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitamura YI, Kitamura T, Kruse JP, Raum JC, Stein R, Gu W et al. (2005). FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab 2: 153–163.

    Article  CAS  PubMed  Google Scholar 

  • Kojima K, Ohhashi R, Fujita Y, Hamada N, Akao Y, Nozawa Y et al. (2008). A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Biochem Biophys Res Commun 373: 423–428.

    Article  CAS  PubMed  Google Scholar 

  • Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM. . (1999). Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398: 630–634.

    Article  CAS  PubMed  Google Scholar 

  • Lamming DW, Latorre-Esteves M, Medvedik O, Wong SN, Tsang FA, Wang C et al. (2005). HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309: 1861–1864.

    Article  CAS  PubMed  Google Scholar 

  • Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB et al. (2006). A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125: 987–1001.

    Article  CAS  PubMed  Google Scholar 

  • Libina N, Berman JR, Kenyon C . (2003). Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115: 489–502.

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Liu PY, Marshall GM . (2009). The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res 69: 1702–1705.

    Article  CAS  PubMed  Google Scholar 

  • Makarova O, Kamberov E, Margolis B . (2000). Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques 29: 970–972.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki H, Daitoku H, Hatta M, Aoyama H, Yoshimochi K, Fukamizu A . (2005). Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA 102: 11278–11283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A . (2003). Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci USA 100: 11285–11290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modur V, Nagarajan R, Evers BM, Milbrandt J . (2002). FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem 277: 47928–47937.

    Article  CAS  PubMed  Google Scholar 

  • Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W et al. (2004). Mammalian SIRT1 represses forkhead transcription factors. Cell 116: 551–563.

    Article  CAS  PubMed  Google Scholar 

  • Obsil T, Obsilova V . (2008). Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene 27: 2263–2275.

    Article  CAS  PubMed  Google Scholar 

  • Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA . (2005). JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci USA 102: 4494–4499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z et al. (2007). FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128: 309–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrot V, Rechler MM . (2005). The coactivator p300 directly acetylates the forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol Endocrinol 19: 2283–2298.

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM . (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem 70: 503–533.

    Article  CAS  PubMed  Google Scholar 

  • Plas DR, Thompson CB . (2003). Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J Biol Chem 278: 12361–12366.

    Article  CAS  PubMed  Google Scholar 

  • Ravid T, Hochstrasser M . (2007). Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nat Cell Biol 9: 422–427.

    Article  CAS  PubMed  Google Scholar 

  • Rena G, Guo S, Cichy SC, Unterman TG, Cohen P . (1999). Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 274: 17179–17183.

    Article  CAS  PubMed  Google Scholar 

  • Schwer B, Verdin E . (2008). Conserved metabolic regulatory functions of sirtuins. Cell Metab 7: 104–112.

    Article  CAS  PubMed  Google Scholar 

  • Sedding DG . (2008). FoxO transcription factors in oxidative stress response and ageing—a new fork on the way to longevity? Biol Chem 389: 279–283.

    Article  CAS  PubMed  Google Scholar 

  • Strohmaier H, Spruck CH, Kaiser P, Won KA, Sangfelt O, Reed SI . (2001). Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413: 316–322.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y . (2006). E3 ubiquitin ligases as cancer targets and biomarkers. Neoplasia 8: 645–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung JY, Kim R, Kim JE, Lee J . (2010). Balance between SIRT1 and DBC1 expression is lost in breast cancer. Cancer Sci 101: 1738–1744.

    Article  CAS  PubMed  Google Scholar 

  • Takaishi H, Konishi H, Matsuzaki H, Ono Y, Shirai Y, Saito N et al. (1999). Regulation of nuclear translocation of forkhead transcription factor AFX by protein kinase B. Proc Natl Acad Sci USA 96: 11836–11841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tedesco D, Lukas J, Reed SI . (2002). The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes Dev 16: 2946–2957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tissenbaum HA, Guarente L . (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410: 227–230.

    Article  CAS  PubMed  Google Scholar 

  • van der Horst A, de Vries-Smits AM, Brenkman AB, van Triest MH, van den Broek N, Colland F et al. (2006). FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol 8: 1064–1073.

    Article  CAS  PubMed  Google Scholar 

  • van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM . (2004). FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279: 28873–28879.

    Article  CAS  PubMed  Google Scholar 

  • Verdin E . (2007). AROuSing SIRT1: identification of a novel endogenous SIRT1 activator. Mol Cell 28: 354–356.

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Nguyen M, Qin FX, Tong Q . (2007). SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6: 505–514.

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Tong Q . (2009). SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma. Mol Biol Cell 20: 801–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen J . (2010). SIRT1 regulates autoacetylation and histone acetyltransferase activity of TIP60. J Biol Chem 285: 11458–11464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X et al. (2008). ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 10: 138–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B et al. (2009). The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325: 1134–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Hou H, Haller EM, Nicosia SV, Bai W . (2005). Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J 24: 1021–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Tsai WB, Cheng CJ, Hsu C, Chung YM, Li PC et al. (2008). Forkhead box transcription factor FOXO3a suppresses estrogen-dependent breast cancer cell proliferation and tumorigenesis. Breast Cancer Res 10: R21.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Xinhua Feng for providing HA-ubiquitin expression plasmid and Dr Jianping Jin for providing HeLa cells stably transfected with His-Biotin-Ubiquitin. We thank Dr Steven I Reed for providing pcDNA-hSkp1, pcDNA-Cul1, pcDNA-Roc1 constructs, and Dr Anne Brunet for providing pECE-FOXO3-M2 wild-type and K242R, K259R, K290R, K569R individual mutants and 4KR mutants, Dr Tony Kouzarides for providing pcDNA-SIRT1, Dr Junjie Chen for providing pcDNA-SIRT1-H363Y plasmid and Dr Boudewijn MT Burgering for providing 6X DBE-Luc construct. We thank Dr Frederic Alt for providing SIRT1 knockout mice. FW was supported by the Ellison Medical Foundation/American Federation for Aging Research senior postdoctoral fellowship. This work was also supported by the US Department of Agriculture grant (6250-51000-055) and NIH (DK075978) to QT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Tong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Chan, CH., Chen, K. et al. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 31, 1546–1557 (2012). https://doi.org/10.1038/onc.2011.347

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.347

Keywords

This article is cited by

Search

Quick links