Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Defining a role for sphingosine kinase 1 in p53-dependent tumors

Abstract

p53 is a crucial tumor suppressor that is mutated or deleted in a majority of cancers. Exactly how p53 prevents tumor progression has proved elusive for many years; however, this information is crucial to define targets for chemotherapeutic development that can effectively restore p53 function. Bioactive sphingolipids have recently emerged as important regulators of proliferative, apoptotic and senescent cellular processes. In this study, we demonstrate that the enzyme sphingosine kinase 1 (SK1), a critical enzyme in the regulation of the key bioactive sphingolipids ceramide, sphingosine and sphingosine-1-phosphate (S1P), serves as a key downstream target for p53 action. Our results show that SK1 is proteolysed in response to genotoxic stress in a p53-dependent manner. p53 null mice display elevation of SK1 levels and a tumor-promoting dysregulation of bioactive sphingolipids in which the anti-growth sphingolipid ceramide is decreased and the pro-growth sphingolipid S1P is increased. Importantly, deletion of SK1 in p53 null mice completely abrogated thymic lymphomas in these mice and prolonged their life span by 30%. Deletion of SK1 also significantly attenuated the formation of other cancers in p53 heterozygote mice. The mechanism of p53 tumor suppression by loss of SK1 is mediated by elevations of sphingosine and ceramide, which in turn were accompanied by increased expression of cell cycle inhibitors and tumor cell senescence. Thus, targeting SK1 may restore sphingolipid homeostasis in p53-dependent tumors and provide insights into novel therapeutic approaches to cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Akao Y, Banno Y, Nakagawa Y, Hasegawa N, Kim TJ, Murate T et al. (2006). High expression of sphingosine kinase 1 and S1P receptors in chemotherapy-resistant prostate cancer PC3 cells and their camptothecin-induced up-regulation. Biochem Biophys Res Commun 342: 1284–1290.

    Article  CAS  Google Scholar 

  • Alesse E, Zazzeroni F, Angelucci A, Giannini G, Di Marcotullio L, Gulino A . (1998). The growth arrest and downregulation of c-myc transcription induced by ceramide are related events dependent on p21 induction, Rb underphosphorylation and E2F sequestering. Cell Death Differ 5: 381–389.

    Article  CAS  Google Scholar 

  • Allende ML, Sasaki T, Kawai H, Olivera A, Mi Y, van Echten-Deckert G et al. (2004). Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 279: 52487–52492.

    Article  CAS  Google Scholar 

  • Baptiste-Okoh N, Barsotti AM, Prives C . (2008). Caspase 2 is both required for p53-mediated apoptosis and downregulated by p53 in a p21-dependent manner. Cell Cycle 7: 1133–1138.

    Article  CAS  Google Scholar 

  • Bayerl MG, Bruggeman RD, Conroy EJ, Hengst JA, King TS, Jimenez M et al. (2008). Sphingosine kinase 1 protein and mRNA are overexpressed in non-Hodgkin lymphomas and are attractive targets for novel pharmacological interventions. Leuk Lymphoma 49: 948–954.

    Article  CAS  Google Scholar 

  • Bergelin N, Blom T, Heikkila J, Lof C, Alam C, Balthasar S et al. (2009). Sphingosine kinase as an oncogene: autocrine sphingosine 1-phosphate modulates ML-1 thyroid carcinoma cell migration by a mechanism dependent on protein kinase C-alpha and ERK1/2. Endocrinology 150: 2055–2063.

    Article  CAS  Google Scholar 

  • Bielawski J, Pierce JS, Snider J, Rembiesa B, Szulc ZM, Bielawska A . (2009). Comprehensive quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods Mol Biol 579: 443–467.

    Article  CAS  Google Scholar 

  • Bielawski J, Szulc ZM, Hannun YA, Bielawska A . (2006). Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods 39: 82–91.

    Article  CAS  Google Scholar 

  • Bringold F, Serrano M . (2000). Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 35: 317–329.

    Article  CAS  Google Scholar 

  • Chao R, Khan W, Hannun YA . (1992). Retinoblastoma protein dephosphorylation induced by D-erythro-sphingosine. J Biol Chem 267: 23459–23462.

    CAS  PubMed  Google Scholar 

  • Cuenin S, Tinel A, Janssens S, Tschopp J . (2008). p53-induced protein with a death domain (PIDD) isoforms differentially activate nuclear factor-kappaB and caspase-2 in response to genotoxic stress. Oncogene 27: 387–396.

    Article  CAS  Google Scholar 

  • Cuvillier O, Levade T . (2003). Enzymes of sphingosine metabolism as potential pharmacological targets for therapeutic intervention in cancer. Pharmacol Res 47: 439–445.

    Article  CAS  Google Scholar 

  • Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S et al. (1996). Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381: 800–803.

    Article  CAS  Google Scholar 

  • Dbaibo GS, Pushkareva MY, Rachid RA, Alter N, Smyth MJ, Obeid LM et al. (1998). p53-dependent ceramide response to genotoxic stress. J Clin Invest 102: 329–339.

    Article  CAS  Google Scholar 

  • Debacq-Chainiaux F, Boilan E, Dedessus Le Moutier J, Weemaels G, Toussaint O . (2010). p38(MAPK) in the senescence of human and murine fibroblasts. Adv Exp Med Biol 694: 126–137.

    Article  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

    Article  CAS  Google Scholar 

  • El-Assaad W, Kozhaya L, Araysi S, Panjarian S, Bitar FF, Baz E et al. (2003). Ceramide and glutathione define two independently regulated pathways of cell death initiated by p53 in Molt-4 leukaemia cells. Biochem J 376: 725–732.

    Article  CAS  Google Scholar 

  • el-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J et al. (1994). WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54: 1169–1174.

    CAS  Google Scholar 

  • Hannun YA, Obeid LM . (2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9: 139–150.

    Article  CAS  Google Scholar 

  • Heffernan-Stroud LA, Obeid LM . (2011). p53 and regulation of bioactive sphingolipids. Adv Enzyme Regul 51: 219–228.

    Article  Google Scholar 

  • Hengst JA, Wang X, Sk UH, Sharma AK, Amin S, Yun JK . (2010). Development of a sphingosine kinase 1 specific small-molecule inhibitor. Bioorg Med Chem Lett 20: 7498–7502.

    Article  CAS  Google Scholar 

  • Ho LH, Taylor R, Dorstyn L, Cakouros D, Bouillet P, Kumar S . (2009). A tumor suppressor function for caspase-2. Proc Natl Acad Sci USA 106: 5336–5341.

    Article  CAS  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7.

    Article  CAS  Google Scholar 

  • Jayadev S, Liu B, Bielawska AE, Lee JY, Nazaire F, Pushkareva M et al. (1995). Role for ceramide in cell cycle arrest. J Biol Chem 270: 2047–2052.

    Article  CAS  Google Scholar 

  • Johnson KR, Johnson KY, Crellin HG, Ogretmen B, Boylan AM, Harley RA et al. (2005). Immunohistochemical distribution of sphingosine kinase 1 in normal and tumor lung tissue. J Histochem Cytochem 53: 1159–1166.

    Article  CAS  Google Scholar 

  • Jung YS, Qian Y, Chen X . (2010). Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal 22: 1003–1012.

    Article  CAS  Google Scholar 

  • Kang S, Bader AG, Zhao L, Vogt PK . (2005). Mutated PI 3-kinases: cancer targets on a silver platter. Cell Cycle 4: 578–581.

    Article  CAS  Google Scholar 

  • Kapitonov D, Allegood JC, Mitchell C, Hait NC, Almenara JA, Adams JK et al. (2009). Targeting sphingosine kinase 1 inhibits Akt signaling, induces apoptosis, and suppresses growth of human glioblastoma cells and xenografts. Cancer Res 69: 6915–6923.

    Article  CAS  Google Scholar 

  • Kawamori T, Kaneshiro T, Okumura M, Maalouf S, Uflacker A, Bielawski J et al. (2009). Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J 23: 405–414.

    Article  CAS  Google Scholar 

  • Kawamori T, Osta W, Johnson KR, Pettus BJ, Bielawski J, Tanaka T et al. (2006). Sphingosine kinase 1 is up-regulated in colon carcinogenesis. FASEB J 20: 386–388.

    Article  CAS  Google Scholar 

  • Kim SS, Chae HS, Bach JH, Lee MW, Kim KY, Lee WB et al. (2002). P53 mediates ceramide-induced apoptosis in SKN-SH cells. Oncogene 21: 2020–2028.

    Article  CAS  Google Scholar 

  • Kolesnick R, Fuks Z . (2003). Radiation and ceramide-induced apoptosis. Oncogene 22: 5897–5906.

    Article  CAS  Google Scholar 

  • Lee JY, Bielawska AE, Obeid LM . (2000). Regulation of cyclin-dependent kinase 2 activity by ceramide. Exp Cell Res 261: 303–311.

    Article  CAS  Google Scholar 

  • Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R et al. (1998). Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279: 1552–1555.

    Article  CAS  Google Scholar 

  • Lees JA, Weinberg RA . (1999). Tossing monkey wrenches into the clock: new ways of treating cancer. Proc Natl Acad Sci USA 96: 4221–4223.

    Article  CAS  Google Scholar 

  • Li W, Yu CP, Xia JT, Zhang L, Weng GX, Zheng HQ et al. (2009). Sphingosine kinase 1 is associated with gastric cancer progression and poor survival of patients. Clin Cancer Res 15: 1393–1399.

    Article  CAS  Google Scholar 

  • Liu G, Parant JM, Lang G, Chau P, Chavez-Reyes A, El-Naggar AK et al. (2004). Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 36: 63–68.

    Article  CAS  Google Scholar 

  • Long JS, Edwards J, Watson C, Tovey S, Mair KM, Schiff R et al. (2010). Sphingosine kinase 1 induces tolerance to human epidermal growth factor receptor 2 and prevents formation of a migratory phenotype in response to sphingosine 1-phosphate in estrogen receptor-positive breast cancer cells. Mol Cell Biol 30: 3827–3841.

    Article  CAS  Google Scholar 

  • Lopez-Marure R, Ventura JL, Sanchez L, Montano LF, Zentella A . (2000). Ceramide mimics tumour necrosis factor-alpha in the induction of cell cycle arrest in endothelial cells. Induction of the tumour suppressor p53 with decrease in retinoblastoma/protein levels. Eur J Biochem 267: 4325–4333.

    Article  CAS  Google Scholar 

  • Loveridge C, Tonelli F, Leclercq T, Lim KG, Long JS, Berdyshev E et al. (2010). The sphingosine kinase 1 inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole induces proteasomal degradation of sphingosine kinase 1 in mammalian cells. J Biol Chem 285: 38841–38852.

    Article  CAS  Google Scholar 

  • Lozano G . (2010). Mouse models of p53 functions. Cold Spring Harb Perspect Biol 2: a001115.

    Article  Google Scholar 

  • Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M et al. (1995). Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375: 503–506.

    Article  CAS  Google Scholar 

  • Mathews TP, Kennedy AJ, Kharel Y, Kennedy PC, Nicoara O, Sunkara M et al. (2010). Discovery, biological evaluation, and structure-activity relationship of amidine based sphingosine kinase inhibitors. J Med Chem 53: 2766–2778.

    Article  CAS  Google Scholar 

  • Obeid LM, Linardic CM, Karolak LA, Hannun YA . (1993). Programmed cell death induced by ceramide. Science 259: 1769–1771.

    Article  CAS  Google Scholar 

  • Ogretmen B, Hannun YA . (2004). Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4: 604–616.

    Article  CAS  Google Scholar 

  • Olivera A, Kohama T, Edsall L, Nava V, Cuvillier O, Poulton S et al. (1999). Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol 147: 545–558.

    Article  CAS  Google Scholar 

  • Olivera A, Spiegel S . (1993). Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365: 557–560.

    Article  CAS  Google Scholar 

  • Oskouian B, Sooriyakumaran P, Borowsky AD, Crans A, Dillard-Telm L, Tam YY et al. (2006). Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer. Proc Natl Acad Sci USA 103: 17384–17389.

    Article  CAS  Google Scholar 

  • Paugh SW, Paugh BS, Rahmani M, Kapitonov D, Almenara JA, Kordula T et al. (2008). A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 112: 1382–1391.

    Article  CAS  Google Scholar 

  • Pchejetski D, Doumerc N, Golzio M, Naymark M, Teissie J, Kohama T et al. (2008). Chemosensitizing effects of sphingosine kinase-1 inhibition in prostate cancer cell and animal models. Mol Cancer Ther 7: 1836–1845.

    Article  CAS  Google Scholar 

  • Pitson SM . (2011). Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci 36: 97–107.

    Article  CAS  Google Scholar 

  • Pitson SM, Xia P, Leclercq TM, Moretti PA, Zebol JR, Lynn HE et al. (2005). Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. J Exp Med 201: 49–54.

    Article  CAS  Google Scholar 

  • Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC et al. (2008). Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols. J Lipid Res 49: 1621–1639.

    Article  CAS  Google Scholar 

  • Pruschy M, Resch H, Shi YQ, Aalame N, Glanzmann C, Bodis S . (1999). Ceramide triggers p53-dependent apoptosis in genetically defined fibrosarcoma tumour cells. Br J Cancer 80: 693–698.

    Article  CAS  Google Scholar 

  • Pyne NJ, Pyne S . (2010). Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10: 489–503.

    Article  CAS  Google Scholar 

  • Ryland LK, Fox TE, Liu X, Loughran TP, Kester M . (2011). Dysregulation of sphingolipid metabolism in cancer. Cancer Biol Ther 11: 138–149.

    Article  CAS  Google Scholar 

  • Sawada M, Kiyono T, Nakashima S, Shinoda J, Naganawa T, Hara S et al. (2004). Molecular mechanisms of TNF-alpha-induced ceramide formation in human glioma cells: P53-mediated oxidant stress-dependent and -independent pathways. Cell Death Differ 11: 997–1008.

    Article  CAS  Google Scholar 

  • Soussi T . (2007). p53 alterations in human cancer: more questions than answers. Oncogene 26: 2145–2156.

    Article  CAS  Google Scholar 

  • Sun P, Yoshizuka N, New L, Moser BA, Li Y, Liao R et al. (2007). PRAK is essential for ras-induced senescence and tumor suppression. Cell 128: 295–308.

    Article  CAS  Google Scholar 

  • Taha TA, Kitatani K, Bielawski J, Cho W, Hannun YA, Obeid LM . (2005). Tumor necrosis factor induces the loss of sphingosine kinase-1 by a cathepsin B-dependent mechanism. J Biol Chem 280: 17196–17202.

    Article  CAS  Google Scholar 

  • Taha TA, Mullen TD, Obeid LM . (2006). A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death. Biochimica et Biophysica Acta (BBA) - Biomembranes 1758: 2027–2036.

    Article  CAS  Google Scholar 

  • Taha TA, Osta W, Kozhaya L, Bielawski J, Johnson KR, Gillanders WE et al. (2004). Down-regulation of sphingosine kinase-1 by DNA damage: dependence on proteases and p53. J Biol Chem 279: 20546–20554.

    Article  CAS  Google Scholar 

  • Vadas M, Xia P, McCaughan G, Gamble J . (2008). The role of sphingosine kinase 1 in cancer: oncogene or non-oncogene addiction? Biochim Biophys Acta 1781: 442–447.

    Article  CAS  Google Scholar 

  • Vakifahmetoglu H, Olsson M, Tamm C, Heidari N, Orrenius S, Zhivotovsky B . (2008). DNA damage induces two distinct modes of cell death in ovarian carcinomas. Cell Death Differ 15: 555–566.

    Article  CAS  Google Scholar 

  • Venable ME, Obeid LM . (1999). Phospholipase D in cellular senescence. Biochim Biophys Acta 1439: 291–298.

    Article  CAS  Google Scholar 

  • Vogelstein B LD, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  Google Scholar 

  • Watson C, Long JS, Orange C, Tannahill CL, Mallon E, McGlynn LM et al. (2010). High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptor-positive breast cancer patients. Am J Pathol 177: 2205–2215.

    Article  CAS  Google Scholar 

  • Weigert A, Schiffmann S, Sekar D, Ley S, Menrad H, Werno C et al. (2009). Sphingosine kinase 2 deficient tumor xenografts show impaired growth and fail to polarize macrophages towards an anti-inflammatory phenotype. Int J Cancer 125: 2114–2121.

    Article  CAS  Google Scholar 

  • Weisz L, Oren M, Rotter V . (2007). Transcription regulation by mutant p53. Oncogene 26: 2202–2211.

    Article  CAS  Google Scholar 

  • Xia P, Gamble JR, Wang L, Pitson SM, Moretti PA, Wattenberg BW et al. (2000). An oncogenic role of sphingosine kinase. Curr Biol 10: 1527–1530.

    Article  CAS  Google Scholar 

  • Yoon CH, Kim MJ, Park MT, Byun JY, Choi YH, Yoo HS et al. (2009). Activation of p38 mitogen-activated protein kinase is required for death receptor-independent caspase-8 activation and cell death in response to sphingosine. Mol Cancer Res 7: 361–370.

    Article  CAS  Google Scholar 

  • Zilfou JT, Lowe SW . (2009). Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1: a001883.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by Award Number I01BX000156 from the Biomedical Laboratory Research and Development Service of the VA Office of Research and Development, NIH/NIGMS R01 GM062887, NIH/NCI P01 CA097132—project 3 (to LMO). NIH/NCI P01 CA097132—project 1 (to YAH). American Heart Association Pre-Doctoral Fellowship AHA 081509E (to RWJ), NIH MSTP Training Grant GM08716 (to RWJ, AMDC, LAHS), MUSC Hollings Cancer Center Abney Foundation Scholarship (to RWJ, LAHS), NIH/NIEHS TG T32 ES012878, and NIH/NIEHS National Research Service Award Individual Predoctoral Fellowship F30ES017379 (to LAHS). Liquid chromatography-mass spectrometry analysis of sphingolipids was performed by Lipidomics Shared Resource, MUSC (Methods 2006, 39: 82–91) supported by NCI Grants: IPO1CA097132 and P30 CA 138313 and NIH/NCRR SC COBRE Grant P20 RR017677 as specified in Supplementary Information. Laboratory space in the CRI building of MUSC was supported by the NIH, Grant C06 RR018823 from the Extramural Research Facilities Program of the National Center for Research Resources. Refer to Supplementary Information for individual acknowledgements and the VA disclaimer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L M Obeid.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heffernan-Stroud, L., Helke, K., Jenkins, R. et al. Defining a role for sphingosine kinase 1 in p53-dependent tumors. Oncogene 31, 1166–1175 (2012). https://doi.org/10.1038/onc.2011.302

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.302

Keywords

This article is cited by

Search

Quick links