Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2

A Corrigendum to this article was published on 20 October 2011

Abstract

Cancer cells recruit monocytes, macrophages and other inflammatory cells by producing abundant chemoattractants and growth factors, such as macrophage colony-stimulating factor (M-CSF/CSF-1) and monocyte chemoattractant protein-1 (MCP-1/CCL2), to promote tumor growth and dissemination. An understanding of the mechanisms that target cancer cells and regulate tumor microenvironment is essential in designing anticancer therapies. Here, we showed that serum amyloid-A (SAA) and cathelicidin (LL-37) stimulated M-CSF and MCP-1 expression with or without lipopolysaccharide (LPS) administration; conversely, lipoxin-A4 (LXA4) and annexin-A1 (ANXA1) inhibited LPS-induced M-CSF and MCP-1 production by human (HepG2) and mouse (H22) hepatocellular carcinoma cells (HCCs). The effects of LXA4, ANXA1, SAA and LL-37 were dependent on the activation of their mutual cell-surface receptor formyl peptide receptor-2 (FPR2) and subsequent ROS–MAPK–NF-kB signalings. Furthermore, our results indicated that LPS switched macrophages into an IL-10lowIL-12high M1 profile, whereas M-CSF+MCP-1 and FPR2 agonists skewed them into M2 (IL-10highIL-12low). In that respect, through modulating the phosphorylation of signal transducer and activator of transcription-3 (STAT3), LXA4 and ANXA1 induced monocyte differentiation into M2a+M2c-like cells and showed antitumorigenetic activities, whereas SAA, LL-37 and M-CSF+MCP-1 led to M2b- or M2d-like polarization, which exacerbated HCC invasion in vitro and in vivo, respectively. Our results suggest that FPR2 has an appreciable pleiotropic regulator role in tumor immunoediting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C et al. (2009). Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 1171: 59–76.

    Article  CAS  Google Scholar 

  • Allavena P, Sica A, Solinas G, Porta C, Mantovani A . (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66: 1–9.

    Article  Google Scholar 

  • Balkwill F, Mantovani A . (2001). Inflammation and cancer: back to Virchow? Lancet 357: 539–545.

    Article  CAS  Google Scholar 

  • Chiang N, Serhan CN, Dahlen SE, Drazen JM, Hay DW, Rovati GE et al. (2006). The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol Rev 58: 463–487.

    Article  CAS  Google Scholar 

  • Cocco E, Bellone S, El-Sahwi K, Cargnelutti M, Buza N, Tavassoli FA et al. (2010). Serum amyloid A: a novel biomarker for endometrial cancer. Cancer 116: 843–851.

    Article  CAS  Google Scholar 

  • Coimbra M, Kuijpers SA, van Seters SP, Storm G, Schiffelers RM . (2009). Targeted delivery of anti-inflammatory agents to tumors. Curr Pharm Des 15: 1825–1843.

    Article  CAS  Google Scholar 

  • Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A . (2009). Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30: 1073–1081.

    Article  CAS  Google Scholar 

  • Craig M, Ying C, Loberg RD . (2008). Co-inoculation of prostate cancer cells with U937 enhances tumor growth and angiogenesis in vivo. J Cell Biochem 103: 1–8.

    Article  CAS  Google Scholar 

  • De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J et al. (2000). LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192: 1069–1074.

    Article  Google Scholar 

  • Duff MD, Mestre J, Maddali S, Yan ZP, Stapleton P, Daly JM . (2007). Analysis of gene expression in the tumor-associated macrophage. J Surg Res 142: 119–128.

    Article  CAS  Google Scholar 

  • Duluc D, Corvaisier M, Blanchard S, Catala L, Descamps P, Gamelin E et al. (2009). Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int J Cancer 125: 367–373.

    Article  CAS  Google Scholar 

  • Duluc D, Delneste Y, Tan F, Moles MP, Grimaud L, Lenoir J et al. (2007). Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110: 4319–4330.

    Article  CAS  Google Scholar 

  • El Kebir D, Jozsef L, Filep JG . (2008). Opposing regulation of neutrophil apoptosis through the formyl peptide receptor-like 1/lipoxin A4 receptor: implications for resolution of inflammation. J Leukoc Biol 84: 600–606.

    Article  CAS  Google Scholar 

  • Emoto M, Danbara H, Yoshikai Y . (1992). Induction of gamma/delta T cells in murine salmonellosis by an avirulent but not by a virulent strain of Salmonella choleraesuis. J Exp Med 176: 363–372.

    Article  CAS  Google Scholar 

  • Fan S, Gao M, Meng Q, Laterra JJ, Symons MH, Coniglio S et al. (2005). Role of NF-kappaB signaling in hepatocyte growth factor/scatter factor-mediated cell protection. Oncogene 24: 1749–1766.

    Article  CAS  Google Scholar 

  • Fiore S, Ryeom SW, Weller PF, Serhan CN . (1992). Lipoxin recognition sites. Specific binding of labeled lipoxin A4 with human neutrophils. J Biol Chem 267: 16168–16176.

    CAS  PubMed  Google Scholar 

  • Fujimoto H, Sangai T, Ishii G, Ikehara A, Nagashima T, Miyazaki M et al. (2009). Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer 125: 1276–1284.

    Article  CAS  Google Scholar 

  • Gao JL, Murphy PM . (1993). Species and subtype variants of the N-formyl peptide chemotactic receptor reveal multiple important functional domains. J Biol Chem 268: 25395–25401.

    CAS  PubMed  Google Scholar 

  • Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C et al. (2009). The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30: 377–386.

    Article  CAS  Google Scholar 

  • Janssen-Heininger YM, Macara I, Mossman BT . (1999). Cooperativity between oxidants and tumor necrosis factor in the activation of nuclear factor (NF)-kappaB: requirement of Ras/mitogen-activated protein kinases in the activation of NF-kappaB by oxidants. Am J Respir Cell Mol Biol 20: 942–952.

    Article  CAS  Google Scholar 

  • Kortylewski M, Xin H, Kujawski M, Lee H, Liu Y, Harris T et al. (2009). Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell 15: 114–123.

    Article  CAS  Google Scholar 

  • Kuninaka S, Yano T, Yokoyama H, Fukuyama Y, Terazaki Y, Uehara T et al. (2000). Direct influences of proinflammatory cytokines (IL-1beta, TNF-alpha, IL-6) on the proliferation and cell-surface antigen expression of cancer cells. Cytokine 12: 8–11.

    Article  CAS  Google Scholar 

  • Lawrence T . (2007). Inflammation and cancer: a failure of resolution? Trends Pharmacol Sci 28: 162–165.

    Article  CAS  Google Scholar 

  • Li Y, Ye D . (2010). Cancer therapy by targeting hypoxia-inducible factor-1. Curr Cancer Drug Targets 10: 782–796.

    Article  CAS  Google Scholar 

  • Li YS, Wu P, Zhou XY, Chen JG, Cai L, Wang F et al. (2008). Formyl-peptide receptor like 1: a potent mediator of the Ca2+ release-activated Ca2+ current ICRAC. Arch Biochem Biophys 478: 110–118.

    Article  CAS  Google Scholar 

  • Martinez FO, Sica A, Mantovani A, Locati M . (2008). Macrophage activation and polarization. Front Biosci 13: 453–461.

    Article  CAS  Google Scholar 

  • McMahon B, Stenson C, McPhillips F, Fanning A, Brady HR, Godson C . (2000). Lipoxin A4 antagonizes the mitogenic effects of leukotriene D4 in human renal mesangial cells. Differential activation of MAP kinases through distinct receptors. J Biol Chem 275: 27566–27575.

    CAS  PubMed  Google Scholar 

  • Miao T, Wu D, Zhang Y, Bo X, Subang MC, Wang P et al (2006). Suppressor of cytokine signaling-3 suppresses the ability of activated signal transducer and activator of transcription-3 to stimulate neurite growth in rat primary sensory neurons. J Neurosci 26: 9512–9519.

    Article  CAS  Google Scholar 

  • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM . (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164: 6166–6173.

    Article  CAS  Google Scholar 

  • Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B et al. (2000). Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13: 715–725.

    Article  CAS  Google Scholar 

  • Panzer U, Steinmetz OM, Turner JE, Meyer-Schwesinger C, von Ruffer C, Meyer TN et al. (2009). Resolution of renal inflammation: a new role for NF-kappaB1 (p50) in inflammatory kidney diseases. Am J Physiol Renal Physiol 297: F429–F439.

    Article  CAS  Google Scholar 

  • Peng J, Yang XO, Chang SH, Yang J, Dong C . (2010). IL-23 signaling enhances Th2 polarization and regulates allergic airway inflammation. Cell Res 20: 62–71.

    Article  CAS  Google Scholar 

  • Pepinsky RB, Sinclair LK, Browning JL, Mattaliano RJ, Smart JE, Chow EP et al. (1986). Purification and partial sequence analysis of a 37-kDa protein that inhibits phospholipase A2 activity from rat peritoneal exudates. J Biol Chem 261: 4239–4246.

    CAS  PubMed  Google Scholar 

  • Perretti M, Chiang N, La M, Fierro IM, Marullo S, Getting SJ et al. (2002a). Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat Med 8: 1296–1302.

    Article  CAS  Google Scholar 

  • Perretti M, Ingegnoli F, Wheller SK, Blades MC, Solito E, Pitzalis C . (2002b). Annexin 1 modulates monocyte–endothelial cell interaction in vitro and cell migration in vivo in the human SCID mouse transplantation model. J Immunol 169: 2085–2092.

    Article  CAS  Google Scholar 

  • Pollard JW . (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4: 71–78.

    Article  CAS  Google Scholar 

  • Sandri S, Rodriguez D, Gomes E, Monteiro HP, Russo M, Campa A . (2008). Is serum amyloid A an endogenous TLR4 agonist? J Leukoc Biol 83: 1174–1180.

    Article  CAS  Google Scholar 

  • Serhan CN, Hamberg M, Samuelsson B . (1984). Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proc Natl Acad Sci USA 81: 5335–5339.

    Article  CAS  Google Scholar 

  • Serhan CN, Yacoubian S, Yang R . (2008). Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol 3: 279–312.

    Article  CAS  Google Scholar 

  • Sironi M, Martinez FO, D'Ambrosio D, Gattorno M, Polentarutti N, Locati M et al. (2006). Differential regulation of chemokine production by Fcgamma receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). J Leukoc Biol 80: 342–349.

    Article  CAS  Google Scholar 

  • Spite M, Serhan CN . (2010). Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins. Circ Res 107: 1170–1184.

    Article  CAS  Google Scholar 

  • Su SB, Gong W, Gao JL, Shen W, Murphy PM, Oppenheim JJ et al. (1999). A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J Exp Med 189: 395–402.

    Article  CAS  Google Scholar 

  • Teng MW, Andrews DM, McLaughlin N, von Scheidt B, Ngiow SF, Moller A et al. (2010). IL-23 suppresses innate immune response independently of IL-17A during carcinogenesis and metastasis. Proc Natl Acad Sci USA 107: 8328–8333.

    Article  CAS  Google Scholar 

  • Varney ML, Olsen KJ, Mosley RL, Bucana CD, Talmadge JE, Singh RK . (2002). Monocyte/macrophage recruitment, activation and differentiation modulate interleukin-8 production: a paracrine role of tumor-associated macrophages in tumor angiogenesis. in vivo 16: 471–477.

    CAS  PubMed  Google Scholar 

  • Wang Q, Ni H, Lan L, Wei X, Xiang R, Wang Y . (2010). Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res 20: 701–712.

    Article  CAS  Google Scholar 

  • Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M et al. (2009). International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 61: 119–161.

    Article  CAS  Google Scholar 

  • Zhang L, Wu P, Jin SW, Yuan P, Wan JY, Zhou XY et al. (2007). Lipoxin A4 negatively regulates lipopolysaccharide-induced differentiation of RAW264.7 murine macrophages into dendritic-like cells. Chin Med J (Engl) 120: 981–987.

    Article  CAS  Google Scholar 

  • Zhang T, Ma Z, Wang R, Wang Y, Wang S, Cheng Z et al. (2010a). Thrombin facilitates invasion of ovarian cancer along peritoneum by inducing monocyte differentiation toward tumor-associated macrophage-like cells. Cancer Immunol Immunother 59: 1097–1108.

    Article  CAS  Google Scholar 

  • Zhang Z, Huang L, Zhao W, Rigas B . (2010b). Annexin 1 induced by anti-inflammatory drugs binds to NF-kappaB and inhibits its activation: anticancer effects in vitro and in vivo. Cancer Res 70: 2379–2388.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Charles N Serhan for helpful comments about FPR2. We also appreciate all anonymous reviewers for helpful suggestions on quality improvement of the paper. This work was supported by China Scholarship Council Fellowship No. 2009616073 and National Natural Science Foundation of China Grants 30570726 and 30772154.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Li or D Ye.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Cai, L., Wang, H. et al. Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2. Oncogene 30, 3887–3899 (2011). https://doi.org/10.1038/onc.2011.112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.112

Keywords

This article is cited by

Search

Quick links