Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dichotomy in NF-κB signaling and chemoresistance in immunoglobulin variable heavy-chain-mutated versus unmutated CLL cells upon CD40/TLR9 triggering

Abstract

Chronic lymphocytic leukemia (CLL) cells circulating in peripheral blood (PB) differ from the leukemic fraction in lymph nodes (LNs) with respect to cell division and drug sensitivity. CD40 stimulation of PB CLL cells in vitro results in chemoresistance and provides a partial model for the LN microenvironment. The TLR9 ligand CpG induces proliferation in immunoglobulin variable heavy-chain-unmutated CLL, but apoptosis in immunoglobulin variable heavy-chain-mutated CLL. To juxtapose proliferative with antiapoptotic signals, we investigated the effects of CpG in the context of CD40 ligation in mutated versus unmutated CLL cells in this study. Prolonged CD40 ligation induced classical, followed by alternative nuclear factor-κB (NF-κB), activity in both subgroups, correlating with enhanced Bfl-1 and Bcl-XL levels, respectively. A dichotomy in NF-κB signaling occurred on combined CD40/TLR9 triggering. This induced declining p52 and Bcl-XL levels, and reversed chemoresistance only in mutated cells, whereas unmutated cells proliferated, maintained p52 and Bcl-XL and remained chemoresistant. The pivotal contribution of Bcl-XL to chemoresistance was shown by the BH3 mimetic ABT-737 and RNA interference. Finally, in ex vivo LN samples, p52, p65 and Bcl-XL levels were highly expressed, corroborating the in vitro findings. Thus, a distinction in NF-κB activation and drug susceptibility in mutated versus unmutated (LN-like) CLL cells was uncovered, which was causally linked to Bcl-XL levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Caligaris-Cappio F . (2003). Role of the microenvironment in chronic lymphocytic leukaemia. Br J Haematol 123: 380–388.

    Article  PubMed  Google Scholar 

  • Caligaris-Cappio F, Ghia P . (2008). Novel insights in chronic lymphocytic leukemia: are we getting closer to understanding the pathogenesis of the disease? J Clin Oncol 26: 4497–4503.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Apgar J, Huynh L, Dicker F, Giago-McGahan T, Rassenti L et al. (2005). ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. Blood 105: 2036–2041.

    Article  CAS  PubMed  Google Scholar 

  • Chiorazzi N . (2007). Cell proliferation and death: forgotten features of chronic lymphocytic leukemia B cells. Best Pract Res Clin Haematol 20: 399–413.

    Article  CAS  PubMed  Google Scholar 

  • Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q et al. (2009). Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459: 717–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damle RN, Ghiotto F, Valetto A, Albesiano E, Fais F, Yan XJ et al. (2002). B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood 99: 4087–4093.

    Article  CAS  PubMed  Google Scholar 

  • Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. (1999). Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94: 1840–1847.

    CAS  PubMed  Google Scholar 

  • Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB et al. (2010). Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463: 88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decker T, Peschel C . (2001). Effect of immunostimulatory CpG-oligonucleotides in chronic lymphocytic leukemia B cells. Leuk Lymphoma 42: 301–307.

    Article  CAS  PubMed  Google Scholar 

  • Decker T, Schneller F, Sparwasser T, Tretter T, Lipford GB, Wagner H et al. (2000). Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells. Blood 95: 999–1006.

    CAS  PubMed  Google Scholar 

  • Endo T, Nishio M, Enzler T, Cottam HB, Fukuda T, James DF et al. (2007). BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-kappaB pathway. Blood 109: 703–710.

    Article  CAS  PubMed  Google Scholar 

  • Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL et al. (1998). Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 102: 1515–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ . (2000). Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 164: 2200–2206.

    Article  CAS  PubMed  Google Scholar 

  • Ghia P, Circosta P, Scielzo C, Vallario A, Camporeale A, Granziero L et al. (2005). Differential effects on CLL cell survival exerted by different microenvironmental elements. Curr Top Microbiol Immunol 294: 135–145.

    CAS  PubMed  Google Scholar 

  • Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M et al. (2001). Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 97: 2777–2783.

    Article  CAS  PubMed  Google Scholar 

  • Hallaert DY, Jaspers A, van Noesel CJ, van Oers MH, Kater AP, Eldering E . (2008). c-Abl kinase inhibitors overcome CD40-mediated drug resistance in CLL: implications for therapeutic targeting of chemoresistant niches. Blood 112: 5141–5149.

    Article  CAS  PubMed  Google Scholar 

  • Hayden MS, Ghosh S . (2008). Shared principles in NF-kappaB signaling. Cell 132: 344–362.

    Article  CAS  PubMed  Google Scholar 

  • Hewamana S, Alghazal S, Lin TT, Clement M, Jenkins C, Guzman ML et al. (2008). The NF-kappaB subunit Rel A is associated with in vitro survival and clinical disease progression in chronic lymphocytic leukemia and represents a promising therapeutic target. Blood 111: 4681–4689.

    Article  CAS  PubMed  Google Scholar 

  • Homig-Holzel C, Hojer C, Rastelli J, Casola S, Strobl LJ, Muller W et al. (2008). Constitutive CD40 signaling in B cells selectively activates the noncanonical NF-kappaB pathway and promotes lymphomagenesis. J Exp Med 205: 1317–1329.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kater AP, Evers LM, Remmerswaal EB, Jaspers A, Oosterwijk MF, van Lier RA et al. (2004). CD40 stimulation of B-cell chronic lymphocytic leukaemia cells enhances the anti-apoptotic profile, but also Bid expression and cells remain susceptible to autologous cytotoxic T-lymphocyte attack. Br J Haematol 127: 404–415.

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Sanada M, Kato I, Sato Y, Takita J, Takeuchi K et al. (2009). Frequent inactivation of A20 in B-cell lymphomas. Nature 459: 712–716.

    Article  CAS  PubMed  Google Scholar 

  • Keating MJ, Chiorazzi N, Messmer B, Damle RN, Allen SL, Rai KR et al. (2003). Biology and treatment of chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program 5: 153–175.

    Article  Google Scholar 

  • Kipps TJ . (2007). The B-cell receptor and ZAP-70 in chronic lymphocytic leukemia. Best Pract Res Clin Haematol 20: 415–424.

    Article  CAS  PubMed  Google Scholar 

  • Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H et al. (2001). Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 194: 1625–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinman DM . (2004). Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4: 249–258.

    Article  CAS  PubMed  Google Scholar 

  • Lankester AC, van Schijndel GM, van der Schoot CE, van Oers MH, van Noesel CJ, van Lier RA . (1995). Antigen receptor nonresponsiveness in chronic lymphocytic leukemia B cells. Blood 86: 1090–1097.

    CAS  PubMed  Google Scholar 

  • Lee HH, Dadgostar H, Cheng Q, Shu J, Cheng G . (1999). NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc Natl Acad Sci USA 96: 9136–9141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longo PG, Laurenti L, Gobessi S, Petlickovski A, Pelosi M, Chiusolo P et al. (2007). The Akt signaling pathway determines the different proliferative capacity of chronic lymphocytic leukemia B-cells from patients with progressive and stable disease. Leukemia 21: 110–120.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Guerra M, Roue G, Perez-Galan P, Alonso R, Villamor N, Montserrat E et al. (2009). p65 activity and ZAP-70 status predict the sensitivity of chronic lymphocytic leukemia cells to the selective IkappaB kinase inhibitor BMS-345541. Clin Cancer Res 15: 2767–2776.

    Article  CAS  PubMed  Google Scholar 

  • Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D et al. (2005). In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 115: 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munk P, Reed J . (2004). Microenvironmental interactions and survival of CLL B-cells. Leuk Lymphoma 45: 2365–2372.

    Article  Google Scholar 

  • Nedellec S, Renaudineau Y, Bordron A, Berthou C, Porakishvili N, Lydyard PM et al. (2005). B cell response to surface IgM cross-linking identifies different prognostic groups of B-chronic lymphocytic leukemia patients. J Immunol 174: 3749–3756.

    Article  CAS  PubMed  Google Scholar 

  • Nishio M, Endo T, Tsukada N, Ohata J, Kitada S, Reed JC et al. (2005). Nurselike cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-1alpha. Blood 106: 1012–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435: 677–681.

    Article  CAS  PubMed  Google Scholar 

  • Oscier DG, Gardiner AC, Mould SJ, Glide S, Davis ZA, Ibbotson RE et al. (2002). Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood 100: 1177–1184.

    CAS  PubMed  Google Scholar 

  • Pleyer L, Egle A, Hartmann TN, Greil R . (2009). Molecular and cellular mechanisms of CLL: novel therapeutic approaches. Nat Rev Clin Oncol 6: 405–418.

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan P, Wang W, Wallach D . (2004). Receptor-specific signaling for both the alternative and the canonical NF-kappaB activation pathways by NF-kappaB-inducing kinase. Immunity 21: 477–489.

    Article  CAS  PubMed  Google Scholar 

  • Rifkin IR, Leadbetter EA, Busconi L, Viglianti G, Marshak-Rothstein A . (2005). Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol Rev 204: 27–42.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Martinez N, Camacho FI, Ruiz-Ballesteros E, Algara P, Garcia JF et al. (2004). Variability in the degree of expression of phosphorylated IkappaBalpha in chronic lymphocytic leukemia cases with nodal involvement. Clin Cancer Res 10: 6796–6806.

    Article  CAS  PubMed  Google Scholar 

  • Romano MF, Lamberti A, Tassone P, Alfinito F, Costantini S, Chiurazzi F et al. (1998). Triggering of CD40 antigen inhibits fludarabine-induced apoptosis in B chronic lymphocytic leukemia cells. Blood 92: 990–995.

    CAS  PubMed  Google Scholar 

  • Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X et al. (2001). Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 194: 1639–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider P . (2005). The role of APRIL and BAFF in lymphocyte activation. Curr Opin Immunol 17: 282–289.

    Article  CAS  PubMed  Google Scholar 

  • Silke J, Brink R . (2010). Regulation of TNFRSF and innate immune signalling complexes by TRAFs and cIAPs. Cell Death Differ 17: 35–45.

    Article  CAS  PubMed  Google Scholar 

  • Skaug B, Jiang X, Chen ZJ . (2009). The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem 78: 769–796.

    Article  CAS  PubMed  Google Scholar 

  • Smit LA, Hallaert DY, Spijker R, de GB, Jaspers A, Kater AP et al. (2007). Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity. Blood 109: 1660–1668.

    Article  CAS  PubMed  Google Scholar 

  • Sun SC, Ley SC . (2008). New insights into NF-kappaB regulation and function. Trends Immunol 29: 469–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tas SW, Vervoordeldonk MJ, Hajji N, Schuitemaker JH, van der Sluijs KF, May MJ et al. (2007). Noncanonical NF-kappaB signaling in dendritic cells is required for indoleamine 2,3-dioxygenase (IDO) induction and immune regulation. Blood 110: 1540–1549.

    Article  CAS  PubMed  Google Scholar 

  • Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng PH, Keats JJ, Wang H et al. (2008). Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 9: 1364–1370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE et al. (2006). The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10: 389–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Gent R, Kater AP, Otto SA, Jaspers A, Borghans JA, Vrisekoop N et al. (2008). In vivo dynamics of stable chronic lymphocytic leukemia inversely correlate with somatic hypermutation levels and suggest no major leukemic turnover in bone marrow. Cancer Res 68: 10137–10144.

    Article  CAS  PubMed  Google Scholar 

  • Vogler M, Butterworth M, Majid A, Walewska RJ, Sun XM, Dyer MJ et al. (2008). Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood 113: 4403–4413.

    Article  PubMed  Google Scholar 

  • Wierda WG, Johnson MM, Do KA, Manshouri T, Dey A, O'Brien S et al. (2003). Plasma interleukin 8 level predicts for survival in chronic lymphocytic leukaemia. Br J Haematol 120: 452–456.

    Article  PubMed  Google Scholar 

  • Willimott S, Baou M, Naresh K, Wagner SD . (2007). CD154 induces a switch in pro-survival Bcl-2 family members in chronic lymphocytic leukaemia. Br J Haematol 138: 721–732.

    Article  CAS  PubMed  Google Scholar 

  • Zarnegar BJ, Wang Y, Mahoney DJ, Dempsey PW, Cheung HH, He J et al. (2008). Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 9: 1371–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank professor Carel JM van Noessel and Dr Richard Bende (department of pathology, AMC) for obtaining lymph node material of CLL patients. We are very grateful to the patients for donating blood samples. ABT-737, a BH3 mimetic, was obtained under MTA from Abbott (Abbott Park, courtesy Dr S Rosenberg). This work was supported by the Dutch Cancer Society (KWF), Grant no. UvA 2007-3856.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Tromp.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tromp, J., Tonino, S., Elias, J. et al. Dichotomy in NF-κB signaling and chemoresistance in immunoglobulin variable heavy-chain-mutated versus unmutated CLL cells upon CD40/TLR9 triggering. Oncogene 29, 5071–5082 (2010). https://doi.org/10.1038/onc.2010.248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.248

Keywords

This article is cited by

Search

Quick links