Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein

Abstract

Oncogenic c-Myc has been described to modulate the expression of a subset of microRNAs (miRNAs), which include miR-22; however, the mechanism through which a miRNA controls c-Myc activity remains unclear. Here we report a novel anti-c-Myc function mediated by miR-22. Ectopically expressed miR-22 inhibited cell proliferation and anchorage-independent growth of human cancer cell lines. Microarray screening and western analyses revealed that miR-22 repressed the c-Myc-binding protein MYCBP, a positive regulator of c-Myc. Consistent with this, reporter assays showed that miR-22-mediated MYCBP gene suppression largely depends on the conserved miR-22 target site within the MYCBP 3′-untranslational region (3′UTR), implying that MYCBP mRNA is a direct miR-22 target. Depletion of MYCBP using small interfering RNA (siRNA) recapitulated the miR-22-induced anti-growth effect on tumor cells, whereas ectopically expressed MYCBP rescued cells from the growth suppression mediated by miR-22. Moreover, repression of MYCBP by miR-22 downregulated a panel of E-box-containing c-Myc target genes. Our results suggest that miR-22 acts as a tumor suppressor through direct repression of MYCBP expression and subsequent reduction of oncogenic c-Myc activities. As c-Myc inhibits the expression of miR-22, we propose a novel positive feedback loop formed by oncogenic c-Myc to accelerate cell proliferation by suppressing miR-22, a potent inhibitor of MYCBP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  Google Scholar 

  • Cai X, Hagedorn CH, Cullen BR . (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna 10: 1957–1966.

    Article  CAS  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    Article  CAS  Google Scholar 

  • Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40: 43–50.

    Article  CAS  Google Scholar 

  • Cole MD, McMahon SB . (1999). The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene 18: 2916–2924.

    Article  CAS  Google Scholar 

  • Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38: 1060–1065.

    Article  CAS  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    Article  CAS  Google Scholar 

  • Furusawa M, Ohnishi T, Taira T, Iguchi-Ariga SM, Ariga H . (2001). AMY-1, a c-Myc-binding protein, is localized in the mitochondria of sperm by association with S-AKAP84, an anchor protein of cAMP-dependent protein kinase. J Biol Chem 276: 36647–36651.

    Article  CAS  Google Scholar 

  • Furusawa M, Taira T, Iguchi-Ariga SM, Ariga H . (2002). AMY-1 interacts with S-AKAP84 and AKAP95 in the cytoplasm and the nucleus, respectively, and inhibits cAMP-dependent protein kinase activity by preventing binding of its catalytic subunit to A-kinase-anchoring protein (AKAP) complex. J Biol Chem 277: 50885–50892.

    Article  CAS  Google Scholar 

  • Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458: 762–765.

    Article  CAS  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. (2005). A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.

    Article  CAS  Google Scholar 

  • Ishizaki R, Shin HW, Iguchi-Ariga SM, Ariga H, Nakayama K . (2006). AMY-1 (associate of Myc-1) localization to the trans-Golgi network through interacting with BIG2, a guanine-nucleotide exchange factor for ADP-ribosylation factors. Genes Cells 11: 949–959.

    Article  CAS  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 685–689.

    Article  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . (2001). Identification of novel genes coding for small expressed RNAs. Science 294: 853–858.

    Article  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T . (2002). Identification of tissue-specific microRNAs from mouse. Curr Biol 12: 735–739.

    Article  CAS  Google Scholar 

  • Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O'Day E et al. (2009). miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to ‘seedless’ 3′UTR microRNA recognition elements. Mol Cell 35: 610–625.

    Article  CAS  Google Scholar 

  • Lei CX, Zhang W, Zhou JP, Liu YK . (2009). Interactions between galectin-3 and integrinbeta3 in regulating endometrial cell proliferation and adhesion. Hum Reprod 24: 2879–2889.

    Article  CAS  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . (2003). Prediction of mammalian microRNA targets. Cell 115: 787–798.

    Article  CAS  Google Scholar 

  • Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN . (2009). Myc-regulated microRNAs attenuate embryonic stem cell differentiation. Embo J 28: 3157–3170.

    Article  CAS  Google Scholar 

  • Luciano DJ, Mirsky H, Vendetti NJ, Maas S . (2004). RNA editing of a miRNA precursor. Rna 10: 1174–1177.

    Article  CAS  Google Scholar 

  • Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA et al. (2009). A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41: 365–370.

    Article  CAS  Google Scholar 

  • Mestdagh P, Fredlund E, Pattyn F, Schulte JH, Muth D, Vermeulen J et al. (2009). MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene 29: 1394–1404.

    Article  Google Scholar 

  • Meyer N, Penn LZ . (2008). Reflecting on 25 years with MYC. Nat Rev Cancer 8: 976–990.

    Article  CAS  Google Scholar 

  • Neely LA, Patel S, Garver J, Gallo M, Hackett M, McLaughlin S et al. (2006). A single-molecule method for the quantitation of microRNA gene expression. Nat Methods 3: 41–46.

    Article  CAS  Google Scholar 

  • Nesbit CE, Tersak JM, Prochownik EV . (1999). MYC oncogenes and human neoplastic disease. Oncogene 18: 3004–3016.

    Article  CAS  Google Scholar 

  • O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    Article  CAS  Google Scholar 

  • Patel JH, Loboda AP, Showe MK, Showe LC, McMahon SB . (2004). Analysis of genomic targets reveals complex functions of MYC. Nat Rev Cancer 4: 562–568.

    Article  CAS  Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A . (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res 14: 1902–1910.

    Article  CAS  Google Scholar 

  • Sakamuro D, Prendergast GC . (1999). New Myc-interacting proteins: a second Myc network emerges. Oncogene 18: 2942–2954.

    Article  CAS  Google Scholar 

  • Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P et al. (2007). MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67: 9762–9770.

    Article  CAS  Google Scholar 

  • Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF et al. (2008). MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 112: 4202–4212.

    Article  CAS  Google Scholar 

  • Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y et al. (2009). MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 69: 1135–1142.

    Article  CAS  Google Scholar 

  • Suzuki T, Shen H, Akagi K, Morse HC, Malley JD, Naiman DQ et al. (2002). New genes involved in cancer identified by retroviral tagging. Nat Genet 32: 166–174.

    Article  CAS  Google Scholar 

  • Taira T, Maeda J, Onishi T, Kitaura H, Yoshida S, Kato H et al. (1998). AMY-1, a novel C-MYC binding protein that stimulates transcription activity of C-MYC. Genes Cells 3: 549–565.

    Article  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G . (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116–5121.

    Article  CAS  Google Scholar 

  • Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K et al. (2005). Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434: 338–345.

    Article  CAS  Google Scholar 

  • Yukitake H, Furusawa M, Taira T, Iguchi-Ariga SM, Ariga H . (2002). AAT-1, a novel testis-specific AMY-1-binding protein, forms a quaternary complex with AMY-1, A-kinase anchor protein 84, and a regulatory subunit of cAMP-dependent protein kinase and is phosphorylated by its kinase. J Biol Chem 277: 45480–45492.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Tianjing Cai for excellent technical assistance, and Dr Iain C Bruce for critical reading of the paper. This work was supported by the National High-tech R&D Program of China (2007AA02Z165, 2008DFA30770), the National Basic Research Program of China (2007CB512100), the National Natural Science Foundation of China (30873187, 30771085 and 30871385) and by grants from the Department of Education of China (20070001011 and 200800010019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Liang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, J., Du, Q. & Liang, Z. Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein. Oncogene 29, 4980–4988 (2010). https://doi.org/10.1038/onc.2010.241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.241

Keywords

This article is cited by

Search

Quick links