Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation

Abstract

Most cancer cells exhibit increased glycolysis for generation of their energy supply. This specificity could be used to preferentially kill these cells. In this study, we identified the signaling pathway initiated by glycolysis inhibition that results in sensitization to death receptor (DR)-induced apoptosis. We showed, in several human cancer cell lines (such as Jurkat, HeLa, U937), that glucose removal or the use of nonmetabolizable form of glucose (2-deoxyglucose) dramatically enhances apoptosis induced by Fas or by tumor necrosis factor-related apoptosis-inducing ligand. This sensitization is controlled through the adenosine monophosphate (AMP)-activated protein kinase (AMPK), which is the central energy-sensing system of the cell. We established the fact that AMPK is activated upon glycolysis block resulting in mammalian target of rapamycin (mTOR) inhibition leading to Mcl-1 decrease, but no other Bcl-2 anti-apoptotic members. Interestingly, we determined that, upon glycolysis inhibition, the AMPK–mTOR pathway controlled Mcl-1 levels neither through transcriptional nor through posttranslational mechanism but rather by controlling its translation. Therefore, our results show a novel mechanism for the sensitization to DR-induced apoptosis linking glucose metabolism to Mcl-1 downexpression. In addition, this study provides a rationale for the combined use of DR ligands with AMPK activators or mTOR inhibitors in the treatment of human cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Alves NL, Derks IA, Berk E, Spijker R, van Lier RA, Eldering E . (2006). The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity 24: 703–716.

    Article  CAS  PubMed  Google Scholar 

  • Amaravadi R, Thompson CB . (2005). The survival kinases Akt and Pim as potential pharmacological targets. J Clin Invest 115: 2618–2624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi MM, Pingsterhaus J, Carayannopoulos M, Moley KH . (2000). Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst. J Biol Chem 275: 40252–40257.

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, Bouchier-Hayes L, Green DR . (2006). Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13: 1396–1402.

    Article  CAS  PubMed  Google Scholar 

  • Corradetti MN, Guan KL . (2006). Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene 25: 6347–6360.

    Article  CAS  PubMed  Google Scholar 

  • Detterbeck FC, Vansteenkiste JF, Morris DE, Dooms CA, Khandani AH, Socinski MA . (2004). Seeking a home for a PET, part 3: emerging applications of positron emission tomography imaging in the management of patients with lung cancer. Chest 126: 1656–1666.

    Article  PubMed  Google Scholar 

  • Eguchi Y, Shimizu S, Tsujimoto Y . (1997). Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57: 1835–1840.

    CAS  PubMed  Google Scholar 

  • Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD . (2005). Metformin and reduced risk of cancer in diabetic patients. BMJ 330: 1304–1305.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrari D, Stepczynska A, Los M, Wesselborg S, Schulze-Osthoff K . (1998). Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer drug-induced apoptosis. J Exp Med 188: 979–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambhir SS . (2002). Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2: 683–693.

    Article  CAS  PubMed  Google Scholar 

  • Guertin DA, Sabatini DM . (2007). Defining the role of mTOR in cancer. Cancer Cell 12: 9–22.

    Article  CAS  PubMed  Google Scholar 

  • Halicka HD, Ardelt B, Li X, Melamed MM, Darzynkiewicz Z . (1995). 2-Deoxy-D-glucose enhances sensitivity of human histiocytic lymphoma U937 cells to apoptosis induced by tumor necrosis factor. Cancer Res 55: 444–449.

    CAS  PubMed  Google Scholar 

  • Han J, Goldstein LA, Gastman BR, Rabinowich H . (2006). Interrelated roles for Mcl-1 and BIM in regulation of TRAIL-mediated mitochondrial apoptosis. J Biol Chem 281: 10153–10163.

    Article  CAS  PubMed  Google Scholar 

  • Herrant M, Jacquel A, Marchetti S, Belhacene N, Colosetti P, Luciano F et al. (2004). Cleavage of Mcl-1 by caspases impaired its ability to counteract Bim-induced apoptosis. Oncogene 23: 7863–7873.

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Li Y, Xu T, Guan KL . (2003). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17: 1829–1834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koschny R, Walczak H, Ganten TM . (2007). The promise of TRAIL--potential and risks of a novel anticancer therapy. J Mol Med 85: 923–935.

    Article  CAS  PubMed  Google Scholar 

  • Kruyt FA . (2008). TRAIL and cancer therapy. Cancer Lett 263: 14–25.

    Article  CAS  PubMed  Google Scholar 

  • Lavallard VJ, Pradelli LA, Paul A, Beneteau M, Jacquel A, Auberger P et al. (2009). Modulation of caspase-independent cell death leads to resensitization of imatinib mesylate-resistant cells. Cancer Res 69: 3013–3020.

    Article  CAS  PubMed  Google Scholar 

  • Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P . (1997). Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185: 1481–1486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long YC, Zierath JR . (2006). AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116: 1776–1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luciano F, Ricci JE, Herrant M, Bertolotto C, Mari B, Cousin JL et al. (2002). T and B leukemic cell lines exhibit different requirements for cell death: correlation between caspase activation, DFF40/DFF45 expression, DNA fragmentation and apoptosis in T cell lines but not in Burkitt's lymphoma. Leukemia 16: 700–707.

    Article  CAS  PubMed  Google Scholar 

  • Marchetti S, Gamas P, Belhacene N, Grosso S, Pradelli LA, Colosetti P et al. (2009). The caspase-cleaved form of LYN mediates a psoriasis-like inflammatory syndrome in mice. EMBO J 28: 2449–2460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR . (2006). Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 21: 749–760.

    Article  CAS  PubMed  Google Scholar 

  • Mills JR, Hippo Y, Robert F, Chen SM, Malina A, Lin CJ et al. (2008). mTORC1 promotes survival through translational control of Mcl-1. Proc Natl Acad Sci USA 105: 10853–10858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mott JL, Kobayashi S, Bronk SF, Gores GJ . (2007). mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26: 6133–6140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Pinedo C, Ruiz-Ruiz C, Ruiz de Almodovar C, Palacios C, Lopez-Rivas A . (2003). Inhibition of glucose metabolism sensitizes tumor cells to death receptor-triggered apoptosis through enhancement of death-inducing signaling complex formation and apical procaspase-8 processing. J Biol Chem 278: 12759–12768.

    Article  CAS  PubMed  Google Scholar 

  • Nam SY, Amoscato AA, Lee YJ . (2002). Low glucose-enhanced TRAIL cytotoxicity is mediated through the ceramide-Akt-FLIP pathway. Oncogene 21: 337–346.

    Article  CAS  PubMed  Google Scholar 

  • Nencioni A, Hua F, Dillon CP, Yokoo R, Scheiermann C, Cardone MH et al. (2005). Evidence for a protective role of Mcl-1 in proteasome inhibitor-induced apoptosis. Blood 105: 3255–3262.

    Article  CAS  PubMed  Google Scholar 

  • Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME . (1999). Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 274: 22532–22538.

    Article  CAS  PubMed  Google Scholar 

  • Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC . (1998). Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 17: 6649–6659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda K, Stagg J, Yagita H, Okumura K, Smyth MJ . (2007). Targeting death-inducing receptors in cancer therapy. Oncogene 26: 3745–3757.

    Article  CAS  PubMed  Google Scholar 

  • Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB . (2001). Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol 21: 5899–5912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volland S, Amtmann E, Sauer G . (1992). Glucose depletion enhances the anti-tumor effect of TNF. Int J Cancer 52: 384–390.

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Twomey D, Lamb J, Schlis K, Agarwal J, Stam RW et al. (2006). Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 10: 331–342.

    Article  CAS  PubMed  Google Scholar 

  • Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S et al. (2004). Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428: 332–337.

    Article  CAS  PubMed  Google Scholar 

  • Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T et al. (2007). Dissecting eIF4E action in tumorigenesis. Genes Dev 21: 3232–3237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Altman BJ, Coloff JL, Herman CE, Jacobs SR, Wieman HL et al. (2007). Glycogen synthase kinase 3alpha and 3beta mediate a glucose-sensitive antiapoptotic signaling pathway to stabilize Mcl-1. Mol Cell Biol 27: 4328–4339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong Q, Gao W, Du F, Wang X . (2005). Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121: 1085–1095.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Magali Herrant for her input, Audrey Paul and Céline Gracia for their technical assistance, Issam Ben Sahra, Vanessa Lavallard and Drs Anne-Odile Hueber, Frederic Bost, Stephane Rocchi and Marcel Deckert for providing tools and advises, Dr Ulrich Maurer for providing GSK3 inhibitor and Dr DR Green for Bcl-2 overexpressing Jurkat cells. This study was supported by the Association pour la Recherche sur le Cancer and by l'Agence Nationale de la Recherche (ref ANR-09-JCJC-0003-01). LAP and MAJ received a fellowship from the Conseil régional Provence-Alpes-Cote-d'Azur. MB is supported by a fellowship from La Fondation de France, CM-P is supported by the Fondo de Investigaciones Sanitarias of Spain and J-ER is a recipient of a contrat d'interface INSERM-CHU de Nice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-E Ricci.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradelli, L., Bénéteau, M., Chauvin, C. et al. Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation. Oncogene 29, 1641–1652 (2010). https://doi.org/10.1038/onc.2009.448

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.448

Keywords

This article is cited by

Search

Quick links