Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutant p53 reactivation by PRIMA-1MET induces multiple signaling pathways converging on apoptosis

Abstract

The low molecular weight compound PRIMA-1MET reactivates mutant p53 and triggers mutant p53-dependent apoptosis in human tumor cells. We investigated the effect of PRIMA-1MET on global gene expression using microarray analysis of Saos-2 cells expressing His273 mutant p53 and parental p53 null Saos-2 cells. PRIMA-1MET affected transcription of a significantly larger number of genes in the mutant p53-expressing cells compared to the p53 null cells. Genes affected by PRIMA-1MET in a mutant p53-dependent manner include the cell-cycle regulators GADD45B and 14-3-3γ and the pro-apoptotic Noxa. Several of the affected genes are known p53 target genes and/or contain p53 DNA-binding motifs. We also found mutant p53-dependent disruption of the cytoskeleton, as well as transcriptional activation of the XBP1 gene and cleavage of its mRNA, a marker for endoplasmic reticulum stress. Our data show that PRIMA-1MET induces apoptosis through multiple transcription-dependent and -independent pathways. Such integral engagement of multiple pathways leading to apoptosis is consistent with restoration of wild-type properties to mutant p53 and is likely to reduce the risk of drug resistance development in clinical applications of PRIMA-1MET.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abcouwer SF, Marjon PL, Loper RK, Vander Jagt DL . (2002). Response of VEGF expression to amino acid deprivation and inducers of endoplasmic reticulum stress. Invest Ophthalmol Vis Sci 43: 2791–2798.

    PubMed  Google Scholar 

  • Andersson J, Larsson L, Klaar S, Holmberg L, Nilsson J, Inganas M et al. (2005). Worse survival for TP53 (p53)-mutated breast cancer patients receiving adjuvant CMF. Ann Oncol 16: 743–748.

    Article  CAS  PubMed  Google Scholar 

  • Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D . (2000). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2: 326–332.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L et al. (1999). Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104: 263–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P et al. (2002). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8: 282–288.

    Article  CAS  PubMed  Google Scholar 

  • Bykov VJ, Zache N, Stridh H, Westman J, Bergman J, Selivanova G et al. (2005). PRIMA-1(MET) synergizes with cisplatin to induce tumor cell apoptosis. Oncogene 24: 3484–3491.

    Article  CAS  PubMed  Google Scholar 

  • Cadwell C, Zambetti GP . (2001). The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene 277: 15–30.

    Article  CAS  PubMed  Google Scholar 

  • Caelles C, Helmberg A, Karin M . (1994). p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370: 220–223.

    Article  CAS  PubMed  Google Scholar 

  • Ceribelli M, Alcalay M, Vigano MA, Mantovani R . (2006). Repression of new p53 targets revealed by ChIP on chip experiments. Cell Cycle 5: 1102–1110.

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, Maurer U, Green DR, Schuler M . (2003). Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4: 371–381.

    Article  CAS  PubMed  Google Scholar 

  • Di Como CJ, Gaiddon C, Prives C . (1999). p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 19: 1438–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C . (2001). A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21: 1874–1887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green DR, Kroemer G . (2009). Cytoplasmic functions of the tumour suppressor p53. Nature 458: 1127–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gronroos E, Terentiev AA, Punga T, Ericsson J . (2004). YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proc Natl Acad Sci USA 101: 12165–12170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M . (1997). Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.

    Article  CAS  PubMed  Google Scholar 

  • He S, Yaung J, Kim YH, Barron E, Ryan SJ, Hinton DR . (2008). Endoplasmic reticulum stress induced by oxidative stress in retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 246: 677–683.

    Article  CAS  PubMed  Google Scholar 

  • Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B et al. (2006). Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312: 572–576.

    Article  CAS  PubMed  Google Scholar 

  • Hoh J, Jin S, Parrado T, Edington J, Levine AJ, Ott J . (2002). The p53MH algorithm and its application in detecting p53-responsive genes. Proc Natl Acad Sci USA 99: 8467–8472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MM, Hwang DY, Huang QQ, Sasaki Y, Jin JP . (2003). Developmentally regulated expression of calponin isoforms and the effect of h2-calponin on cell proliferation. Am J Physiol Cell Physiol 284: C156–C167.

    Article  CAS  PubMed  Google Scholar 

  • Inesi G, Sagara Y . (1992). Thapsigargin, a high affinity and global inhibitor of intracellular Ca2+ transport ATPases. Arch Biochem Biophys 298: 313–317.

    Article  CAS  PubMed  Google Scholar 

  • Johnson TM, Yu ZX, Ferrans VJ, Lowenstein RA, Finkel T . (1996). Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci USA 93: 11848–11852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH . (1997). Regulation of p53 stability by Mdm2. Nature 387: 299–303.

    Article  CAS  PubMed  Google Scholar 

  • Lai E, Teodoro T, Volchuk A . (2007). Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda) 22: 193–201.

    CAS  Google Scholar 

  • Lambert JM, Gorzov P, Veprintsev DB, Soderqvist M, Segerback D, Bergman J et al. (2009). PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15: 376–388.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Lee B, Lee AS . (2006). Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 281: 7260–7270.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Mao Y, Brandt-Rauf PW, Williams AC, Fine RL . (2005). Selective induction of apoptosis in mutant p53 premalignant and malignant cancer cells by PRIMA-1 through the c-Jun-NH2-kinase pathway. Mol Cancer Ther 4: 901–909.

    Article  CAS  PubMed  Google Scholar 

  • Livneh Z . (2006). Keeping mammalian mutation load in check: regulation of the activity of error-prone DNA polymerases by p53 and p21. Cell Cycle 5: 1918–1922.

    Article  CAS  PubMed  Google Scholar 

  • Mirza A, Wu Q, Wang L, McClanahan T, Bishop WR, Gheyas F et al. (2003). Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression. Oncogene 22: 3645–3654.

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay D, Tsiokas L, Sukhatme VP . (1995). Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res 55: 6161–6165.

    CAS  PubMed  Google Scholar 

  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19: 607–614.

    Article  CAS  PubMed  Google Scholar 

  • Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B . (1997). A model for p53-induced apoptosis. Nature 389: 300–305.

    Article  CAS  PubMed  Google Scholar 

  • Rahman R, Latonen L, Wiman KG . (2005). hTERT antagonizes p53-induced apoptosis independently of telomerase activity. Oncogene 24: 1320–1327.

    Article  CAS  PubMed  Google Scholar 

  • Rogojina AT, Orr WE, Song BK, Geisert Jr EE . (2003). Comparing the use of Affymetrix to spotted oligonucleotide microarrays using two retinal pigment epithelium cell lines. Mol Vis 9: 482–496.

    CAS  PubMed  Google Scholar 

  • Rokaeus N, Klein G, Wiman KG, Szekely L, Mattsson K . (2007). PRIMA-1(MET) induces nucleolar accumulation of mutant p53 and PML nuclear body-associated proteins. Oncogene 26: 982–992.

    Article  CAS  PubMed  Google Scholar 

  • Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM . (2005). The antioxidant function of the p53 tumor suppressor. Nat Med 11: 1306–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Vakifahmetoglu H, Stridh H, Zhivotovsky B, Wiman KG . (2008). PRIMA-1MET induces mitochondrial apoptosis through activation of caspase-2. Oncogene 27: 6571–6580.

    Article  CAS  PubMed  Google Scholar 

  • Strano S, Fontemaggi G, Costanzo A, Rizzo MG, Monti O, Baccarini A et al. (2002). Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem 277: 18817–18826.

    Article  CAS  PubMed  Google Scholar 

  • Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP et al. (2000). Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287: 664–666.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Ryan KM . (2009). p53 and metabolism. Nat Rev Cancer 9: 691–700.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wu Q, Qiu P, Mirza A, McGuirk M, Kirschmeier P et al. (2001). Analyses of p53 target genes in the human genome by bioinformatic and microarray approaches. J Biol Chem 276: 43604–43610.

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Lee K, Rehman A, Daoud SS . (2007). PRIMA-1 induces apoptosis by inhibiting JNK signaling but promoting the activation of Bax. Biochem Biophys Res Commun 352: 203–212.

    Article  CAS  PubMed  Google Scholar 

  • Westhoff B, Chapple JP, van der Spuy J, Hohfeld J, Cheetham ME . (2005). HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr Biol 15: 1058–1064.

    Article  CAS  PubMed  Google Scholar 

  • Wulfkuhle JD, Donina IE, Stark NH, Pope RK, Pestonjamasp KN, Niswonger ML et al. (1999). Domain analysis of supervillin, an F-actin bundling plasma membrane protein with functional nuclear localization signals. J Cell Sci 112: 2125–2136.

    CAS  PubMed  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445: 656–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakovleva T, Kolesnikova L, Vukojevic V, Gileva I, Tan-No K, Austen M et al. (2004). YY1 binding to a subset of p53 DNA-target sites regulates p53-dependent transcription. Biochem Biophys Res Commun 318: 615–624.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K . (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107: 881–891.

    Article  CAS  PubMed  Google Scholar 

  • Zache N, Lambert JM, Wiman KG, Bykov VJ . (2008). PRIMA-1(MET) inhibits growth of mouse tumors carrying mutant p53. Cell Oncol 30: 411–418.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Bert Vogelstein, Johns Hopkins Oncology Center, for HCT116 cells. This work was supported by the Swedish Cancer Society (Cancerfonden), Cancerföreningen, Karolinska Institutet and the EU 6th framework program. This publication reflects the author's views and not necessarily those of the EC. The information in this document is provided as is and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at his/her sole risk and liability. The Community is not liable for any use that may be made of the information contained herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K G Wiman.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambert, J., Moshfegh, A., Hainaut, P. et al. Mutant p53 reactivation by PRIMA-1MET induces multiple signaling pathways converging on apoptosis. Oncogene 29, 1329–1338 (2010). https://doi.org/10.1038/onc.2009.425

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.425

Keywords

Search

Quick links