Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Histone deacetylases and the immunological network: implications in cancer and inflammation

Abstract

The initiation, magnitude and duration of an immune response against antigens are a tightly regulated process involving a dynamic, orchestrated balance of pro- and anti-inflammatory pathways in immune cells. Such a delicate balance is critical for allowing efficient immune response against foreign antigens while preventing autoimmune attack against self-antigens. In recent years, much effort has been devoted to understanding immune evasion by cancer cells. Also, significant advances have been made in mechanistically understanding the role of pro- and anti-inflammatory cytokines in the regulation of immune responses against antigens, including those expressed by tumors. However, we still know very little about the regulation of inflammatory/anti-inflammatory genes in their natural setting, the chromatin substrate. Several mechanisms have been identified to influence chromatin flexibility and allow dynamic changes in gene expression. Among those, chromatin modifications induced by acetylation and deacetylation of histone tails have gained wide attention. In this study, we discuss the role of histone deacetylases in the transcriptional regulation of genes involved in the inflammatory response and how these enzymes coordinate the dynamic expression of these genes during an immune response. This emerging knowledge is opening new avenues to better understand epigenetic regulation of inflammatory responses and providing new molecular targets for either amplifying or ameliorating immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Al-Janadi A, Chandana S, Conley B . (2008). Histone deacetylation: an attractive target for cancer therapy? Drugs R D 9: 369–383.

    CAS  PubMed  Google Scholar 

  • Anderson L, Johnston B, Watson R, Murphy S, Ferguson H, Comber H et al. (2006). Nonsteroidal anti-inflammatory drugs and the esophageal Inflammation-Metaplasia-Adenocarcinoma sequence. Cancer Res 66: 4975–4982.

    CAS  PubMed  Google Scholar 

  • Ansel KM, Djuretic I, Tanasa B, Rao A . (2006). Regulation of Th2 differentiation and IL4 locus accessibility. Ann Rev of Immunol 24: 607–656.

    CAS  Google Scholar 

  • Aptsiauri N, Cabrera T, Mendez R, Garcia-Lora A, Ruiz-Cabello F, Garrido F . (2007). Role of altered expression of HLA class I molecules in cancer progression. Adv Exp Med Biol 601: 123–131.

    PubMed  Google Scholar 

  • Asirvatham AJ, Magner WJ, Tomasi TB . (2009). miRNA regulation of cytokine genes. Cytokine 45: 58–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atadja P . (2009). Development of the pan-DAC inhibitor panobinostat (LBH589): successes and challenges. Cancer Lett 280: 233–241.

    CAS  PubMed  Google Scholar 

  • Aune TM, Collins PL, Chang S . (2009). Epigenetics and T helper 1 differentiation. Immunology 126: 299–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aung HT, Schroder K, Himes SR, Brion K, van Zuylen W, Trieu A et al. (2006). LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression. FASEB J 20: 1315–1327.

    CAS  PubMed  Google Scholar 

  • Avni O, Lee D, Macian F, Szabo SJ, Glimcher LH, Rao A . (2002). TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat Immunol 3: 643–651.

    CAS  PubMed  Google Scholar 

  • Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG . (2002). Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-κB and β-amyloid precursor protein. Cell 110: 55–67.

    CAS  PubMed  Google Scholar 

  • Barnes PJ . (2005). Molecular mechanisms and cellular effects of glucocorticosteroids. Immunol Allergy Clin 25: 451–468.

    Google Scholar 

  • Barnes PJ, Ito K, Adcock IM . (2004). Corticosteroid resistance in chronic obstructive pulmonary disease: inactivation of histone deacetylase. The Lancet 363: 731–733.

    CAS  Google Scholar 

  • Bartl S, Taplick J, Lagger G, Khier H, Kuchler K, Seiser C . (1997). Identification of mouse histone deacetylase 1 as a growth factor-inducible gene. Mol Cell Biol 17: 5033–5043.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalla KN . (2005). Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 23: 3971–3993.

    CAS  PubMed  Google Scholar 

  • Bhat K, Pellowski C, Zhang Y, Kim S, deLaCruz C, Rehli M et al. (2008). Selective repression of YKL-40 by NF-kappaB in glioma cell lines involves recruitment of histone deacetylase-1 and -2. FEBS Lett 582: 3193–3200.

    CAS  PubMed  Google Scholar 

  • Bishton M, Kenealy M, Johnstone R, Rasheed W, Prince HM . (2007). Epigenetic targets in hematological malignancies: combination therapies with HDACis and demethylating agents. Expert Rev Anticanc 7: 1439–1449.

    CAS  Google Scholar 

  • Blanchard F, Chipoy C . (2005). Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug Discov Today 10: 197–204.

    CAS  PubMed  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW . (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5: 769–784.

    CAS  PubMed  Google Scholar 

  • Bonfils C, Kalita A, Dubay M, Siu LL, Carducci MA, Reid G et al. (2008). Evaluation of the pharmacodynamic effects of MGCD0103 from preclinical models to human using a novel HDAC enzyme assay. Clin Cancer Res 14: 3441–3449.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowen H, Kelly A, Lee T, Lavender P . (2008). Control of cytokine gene transcription in Th1 and Th2 cells. Clin Exp Allergy 38: 1422–1431.

    CAS  PubMed  Google Scholar 

  • Bradbury CA, Khanim FL, Hayden R, Bunce CM, White DA, Drayson MT et al. (2005). Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 19: 1751–1759.

    CAS  PubMed  Google Scholar 

  • Cabrera T, Maleno I, Collado A, Nevot MAL, Tait BD, Garrido F . (2007). Analysis of HLA class I alterations in tumors: choosing a strategy based on known patterns of underlying molecular mechanisms. Tissue Antigens 69: 264–268.

    CAS  PubMed  Google Scholar 

  • Calnan BJ, Szychowski S, Chan FK-M, Cado D, Winoto A . (1995). A role for the orphan steroid receptor Nur77 in apoptosis accompanying antigen-induced negative selection. Immunity 3: 273–282.

    CAS  PubMed  Google Scholar 

  • Cavaillon JM . (2001). Pro- versus anti-inflammatory cytokines: myth or reality. Cell Mol Biol (Noise-le-grand) 47: 695–702.

    CAS  Google Scholar 

  • Chang HM, Paulson M, Holko M, Rice CM, Williams BRG, Marié I et al. (2004). Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity. Proc Natl Acad Sci USA 101: 9578–9583.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S, Collins PL, Aune TM . (2008). T-Bet dependent removal of Sin3A-histone deacetylase complexes at the Ifng locus drives Th1 differentiation. J Immunol 181: 8372–8381.

    CAS  PubMed  Google Scholar 

  • Chen GY, Osada H, Santamaria-Babi LF, Kannagi R . (2006). Interaction of GATA-3/T-bet transcription factors regulates expression of sialyl Lewis X homing receptors on Th1/Th2 lymphocytes. Proc Natl Acad Sci USA 103: 16894–16899.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LF, Fischle W, Verdin E, Greene WC . (2001). Duration of nuclear NF-kappa B action regulated by reversible acetylation. Science 293: 1653–1657.

    CAS  Google Scholar 

  • Chen LF, Mu Y, Greene WC. . (2002). Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kB. EMBO J 21: 6539–6548.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J-H, Oh SW, Kang MS, Kwon HJ, Oh GT, Kim DY . (2005). Trichostatin A attenuates airway inflammation in mouse asthma model. Clin Exp Allergy 35: 89–96.

    CAS  PubMed  Google Scholar 

  • Cohen M, Cohen S . (1996). Cytokine function: a study in biologic diversity. Am J Clin Pathol 105: 589–598.

    CAS  PubMed  Google Scholar 

  • Connor ME, Davidson SE, Stern PL, Arrand JR, West CML . (1993). Evaluation of multiple biologic parameters in cervical carcinoma: high macrophage infiltration in HPV-associated tumors. Int J Gynecol Cancer 3: 103–109.

    PubMed  Google Scholar 

  • Cromme F, Bommel Pv, Walboomers J, Gallee M, Stern P, Kenemans P et al. (1994). Differences in MHC and TAP-1 expression in cervical cancer lymph node metastases as compared with the primary tumours. Br J Cancer 69: 1176–1181.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dangond F, Gullans SR . (1998). Differential expression of human histone deacetylase mRNAs in response to immune cell apoptosis induction by trichostatin A and butyrate. Biochem Bioph Res Co 247: 833–837.

    CAS  Google Scholar 

  • de Ruijter AJM, van Gennip AH, Caron HN, Kemp S, van Kuilenburg ABP . (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370: 737–749.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Visser K, Coussens L . (2005). The interplay between innate and adaptive immunity regulates cancer development. Cancer Immunol Immun 54: 1143–1152.

    CAS  Google Scholar 

  • Dequiedt F, Kasler H, Fischle W, Kiermer V, Weinstein M, Herndier BG et al. (2003). HDAC7, a thymus-specific class II histone deacetylase, regulates Nur77 transcription and TCR-mediated apoptosis. Immunity 18: 687–698.

    CAS  PubMed  Google Scholar 

  • Dinarello CA . (1996). Biologic basis for interleukin-1 in disease. Blood 87: 2095–2147.

    CAS  PubMed  Google Scholar 

  • Dokmanovic M, Clarke C, Marks PA . (2007). Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5: 981.

    CAS  PubMed  Google Scholar 

  • Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E, Herrera LA . (2008). Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev 34: 206–222.

    CAS  PubMed  Google Scholar 

  • Durst KL, Hiebert SW . (2004). Role of RUNX family members in transcriptional repression and gene silencing. Oncogene 23: 4220–4224.

    CAS  PubMed  Google Scholar 

  • Ellis L, Pan Y, Smyth GK, George DJ, McCormack C, Williams-Truax R et al. (2008). Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clin Cancer Res 14: 4500–4510.

    CAS  PubMed  Google Scholar 

  • Emanuele S, Lauricella M, Tesoriere G . (2008). Histone deacetylase inhibitors: apoptotic effects and clinical implications. Int J Oncol 33: 637–646.

    CAS  PubMed  Google Scholar 

  • Engel I, Murre C . (2001). The function of E- and id proteins in lymphocyte development. Nat Rev Immunol 1: 193–199.

    CAS  PubMed  Google Scholar 

  • Enya K, Hayashi H, Takii T, Ohoka N, Kanata S, Okamoto T et al. (2008). The interaction with Sp1 and reduction in the activity of histone deacetylase 1 are critical for the constitutive gene expression of IL-1 alpha in human melanoma cells. J Leukoc Biol 83: 190–199.

    CAS  PubMed  Google Scholar 

  • Esteller M . (2002). CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21: 5427–5440.

    CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B . (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301: 89–92.

    CAS  PubMed  Google Scholar 

  • Feng R, Oton A, Mapara MY, Anderson G, Belani C, Lentzsch S . (2007). The histone deacetylase inhibitor, PXD101, potentiates bortezomib-induced anti-multiple myeloma effect by induction of oxidative stress and DNA damage. Br J Haemat 139: 385–397.

    CAS  Google Scholar 

  • Finkel T, Deng CX, Mostoslavsky R . (2009). Recent progress in the biology and physiology of sirtuins. Nature 460: 587–591.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Follows GA, Tagoh H, Lefevre P, Hodge D, Morgan GJ, Bonifer C . (2003). Epigenetic consequences of AML1–ETO action at the human c-FMS locus. EMBO J 22: 2798–2809.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fournel M, Bonfils C, Hou Y, Yan PT, Trachy-Bourget M-C, Kalita A et al. (2008). MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol Cancer Therap 7: 759–768.

    CAS  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al. (2005). Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37: 391–400.

    CAS  PubMed  Google Scholar 

  • Freund A, Chauveau C, Brouillet J-P, Lucas A, Lacroix M, Licznar A et al. (2003). IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells. Oncogene 22: 256–265.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frew AJ, Johnstone RW, Bolden JE . (2009). Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett 280: 125–133.

    CAS  PubMed  Google Scholar 

  • Fritzsche F, Weichert W, Roske A, Gekeler V, Beckers T, Stephan C et al. (2008). Class I histone deacetylases 1, 2 and 3 are highly expressed in renal cell cancer. BMC Cancer 8: 381.

    PubMed  PubMed Central  Google Scholar 

  • Furumai R, Matsuyama A, Kobashi N, Lee K-H, Nishiyama M, Nakajima H et al. (2002). FK228 (Depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res 62: 4916–4921.

    CAS  PubMed  Google Scholar 

  • Gao L, Cueto MA, Asselbergs F, Atadja P . (2002). Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277: 25748–25755.

    CAS  PubMed  Google Scholar 

  • Gesbert F, Delespine-Carmagnat M, Bertoglio J . (1998). Recent advances in the understanding of interleukin-2 signal transduction. J Clin Immunol 18: 307–320.

    CAS  PubMed  Google Scholar 

  • Giles F, Fischer T, Cortes J, Garcia-Manero G, Beck J, Ravandi F et al. (2006). A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 12: 4628–4635.

    CAS  PubMed  Google Scholar 

  • Gimsing P, Hansen M, Knudsen LM, Knoblauch P, Christensen IJ, Ooi CE et al. (2008). A phase I clinical trial of the histone deacetylase inhibitor belinostat in patients with advanced hematological neoplasia. Eur J Haematol 81: 170–176.

    CAS  PubMed  Google Scholar 

  • Gimsing P . (2009). Belinostat: a new broad acting antineoplastic histone deacetylase inhibitor. Expert Opin Investig Drugs 18: 501–508.

    CAS  PubMed  Google Scholar 

  • Glaser KB, Li J, Staver MJ, Wei R-Q, Albert DH, Davidsen SK . (2003). Role of class I and class II histone deacetylases in carcinoma cells using siRNA. Biochem Bioph Res Co 310: 529–536.

    CAS  Google Scholar 

  • Glauben R, Batra A, Fedke I, Zeitz M, Lehr HA, Leoni F et al. (2006). Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J Immunol 176: 5015–5022.

    CAS  PubMed  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E . (2005). Acetylation and deacetylation of non-histone proteins. Gene 363: 15–23.

    CAS  PubMed  Google Scholar 

  • Gopal YN, Tarandeep A, Van Dyke MW . (2006). Tumour necrosis factor-a depletes histone deacetylase 1 protein through IKK2. EMBO Rep 7: 291–296.

    CAS  Google Scholar 

  • Gopal YN, Van Dyke MW . (2006). Depletion of histone deacetylase I protein: a common consequence of inflammatory cytokine signaling? Cell Cycle 5: 2738–2743.

    CAS  PubMed  Google Scholar 

  • Guo Y, Yang T, Liu X, Lu S, Wen J, Durbin JE et al. (2002). Cis elements for transporter associated with antigen-processing-2 transcription: two new promoters and an essential role of the IFN response factor binding element in IFN-{gamma}-mediated activation of the transcription initiator. Int Immunol 14: 189–200.

    CAS  PubMed  Google Scholar 

  • Haberland M, Montgomery RL, Olson EN . (2009). The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10: 32–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hallermalm K, Seki K, Wei C, Castelli C, Rivoltini L, Kiessling R et al. (2001). Tumor necrosis factor-alpha induces coordinated changes in major histocompatibility class I presentation pathway, resulting in increased stability of class I complexes at the cell surface. Blood 98: 1108–1115.

    CAS  PubMed  Google Scholar 

  • Hartlapp I, Christian P, Ganna W, Andrea K, Michael H, Daniel R . (2009). Depsipeptide induces cell death in Hodgkin lymphoma-derived cell lines. Leukemia Res 33: 929–936.

    CAS  Google Scholar 

  • Hauser C, Schuettengruber B, Bartl S, Lagger G, Seiser C . (2002). Activation of the mouse histone deacetylase 1 gene by cooperative histone phosphorylation and acetylation. Mol Cell Biol 22: 7820–7830.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hess-Stumpp H, Bracker TU, Henderson D, Politz O . (2007). MS-275, a potent orally available inhibitor of histone deacetylases—the development of an anticancer agent. Int J Biochem Cell B 39: 1388–1405.

    CAS  Google Scholar 

  • Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A et al. (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417: 455–458.

    CAS  PubMed  Google Scholar 

  • Ihle JN . (2001). The Stat family in cytokine signaling. Curr Opin Cell Biol 13: 211–217.

    CAS  PubMed  Google Scholar 

  • Inoue S, Mai A, Dyer MJS, Cohen GM . (2006). Inhibition of histone deacetylase class I but not class II is critical for the sensitization of leukemic cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res 66: 6785–6792.

    CAS  PubMed  Google Scholar 

  • Ito K, Barnes PJ, Adcock IM . (2000). Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta -induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol 20: 6891–6903.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito K, Hanazawa T, Tomita K, Barnes PJ, Adcock IM . (2004). Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Bioph Res Co 315: 240–245.

    CAS  Google Scholar 

  • Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM et al. (2005). Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 352: 1967–1976.

    CAS  PubMed  Google Scholar 

  • Ito K, Lim S, Caramori G, Chung KF, Barnes PJ, Adcock IM . (2001). Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J 15: 1110–1112.

    CAS  PubMed  Google Scholar 

  • Ito K, Yamamura S, Essilfie-Quaye S, Cosio B, Ito M, Barnes PJ et al. (2006). Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med 203: 7–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jee Y-K, Gilmour J, Kelly A, Bowen H, Richards D, Soh C et al. (2005). Repression of interleukin-5 transcription by the glucocorticoid receptor targets GATA3 signaling and involves histone deacetylase recruitment. J Biol Chem 280: 23243–23250.

    CAS  PubMed  Google Scholar 

  • Kametani Y, Wang L, Koduka K, Sato T, Katano I, Habu S . (2008). Rapid histone deacetylation and transient HDAC association in the IL-2 promoter region of TSST-1-stimulated T cells. Immunol Lett 119: 97–102.

    CAS  PubMed  Google Scholar 

  • Karpf AR . (2006). A Potential role for epigenetic modulatory drugs in the enhancement of cancer/Germ-line antigen vaccine efficacy. Epigenetics 1: 116–120.

    PubMed  Google Scholar 

  • Karpf AR, Lasek AW, Ririe TO, Hanks AN, Grossman D, Jones DA . (2004). Limited gene activation in tumor and normal epithelial cells treated with the DNA methyltransferase Inhibitor 5-Aza-2′-deoxycytidine. Mol Pharmacol 65: 18–27.

    CAS  PubMed  Google Scholar 

  • Kazantsev AG, Thompson LM . (2008). Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7: 854–868.

    CAS  PubMed  Google Scholar 

  • Khan A, Tomasi T . (2008). Histone deacetylase regulation of immune gene expression in tumor cells. Immunol Res 40: 164–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klampfer L, Huang J, Swaby LA, Augenlicht L . (2004). Requirement of histone deacetylase activity for signaling by STAT1. J Biol Chem 279: 30358–30368.

    CAS  PubMed  Google Scholar 

  • Krämer OH, Baus D, Knauer SK, Stein S, Jäger E, Stauber RH et al. (2006). Acetylation of Stat1 modulates NF-kB activity. Genes Dev 20: 473–485.

    PubMed  PubMed Central  Google Scholar 

  • Krämer OH, Knauer SK, Greiner G, Jandt E, Reichardt S, Gährs KH et al. (2009). A phosphorylation-acetylation switch regulates STAT1 signaling. Genes Dev 23: 223–235.

    PubMed  PubMed Central  Google Scholar 

  • Kuendgen A, Gattermann N . (2007). Valproic acid for the treatment of myeloid malignancies. Cancer 110: 943–954.

    CAS  PubMed  Google Scholar 

  • Lech-Maranda E, Robak E, Robak AKT . (2007). Depsipeptide (FK228) as a novel histone deacetylase inhibitor: mechanism of action and anticancer activity. Mini Rev Med Chem 7: 1062–1069.

    CAS  PubMed  Google Scholar 

  • Leder A, Orkin S, Leder P . (1975). Differentiation of erythroleukemic cells in the presence of inhibitors of DNA synthesis. Science 190: 893–894.

    CAS  PubMed  Google Scholar 

  • Li B, Samanta A, Song X, Iacono KT, Bembas K, Tao R et al. (2007). FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc of Natl Acad Sci 104: 4571–4576.

    CAS  Google Scholar 

  • Li H, Ou X, Xiong J, Wang T . (2006). HPV16E7 mediates HADC chromatin repression and downregulation of MHC class I genes in HPV16 tumorigenic cells through interaction with an MHC class I promoter. Biochem Bioph Res Co 349: 1315–1321.

    CAS  Google Scholar 

  • Li M, Ra F . (2008). Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity 28: 468–476.

    PubMed  Google Scholar 

  • Lin Y, Huang R, Chen L, Li S, Shi Q, Jordan C et al. (2004). Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays. Int J Cancer 109: 507–515.

    CAS  PubMed  Google Scholar 

  • Ling H, Recklies AD . (2004). The chitinase 3-like protein human cartilage glycoprotein 39 inhibits cellular responses to the inflammatory cytokines interleukin-1 and tumour necrosis factor-alpha. Biochem J 380: 651–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linggi B, Muller-Tidow C, van de Locht L, Hu M, Nip J, Serve H et al. (2002). The t(8;21) fusion protein, AML1-ETO, specifically represses the transcription of the p14ARF tumor suppressor in acute myeloid leukemia. Nat Med 8: 743–750.

    CAS  PubMed  Google Scholar 

  • Lu J, Sun H, Wang X, Liu C, Xu X, Li F et al. (2005). Interleukin-12 p40 promoter activity is regulated by the reversible acetylation mediated by HDAC1 and p300. Cytokine 31: 46–51.

    CAS  PubMed  Google Scholar 

  • Lucio-Eterovic A, Cortez M, Valera E, Motta F, Queiroz R, Machado H et al. (2008). Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer 8: 243.

    PubMed  PubMed Central  Google Scholar 

  • Ma B, Sung F, Tao Q, Poon F, Lui V, Yeo W et al. (2009). The preclinical activity of the histone deacetylase inhibitor PXD101 (belinostat) in hepatocellular carcinoma cell lines. Inves New Drug (e-pub ahead of print).

    PubMed  Google Scholar 

  • Maeda T, Towatari M, Kosugi H, Saito H . (2000). Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood 96: 3847–3856.

    CAS  PubMed  Google Scholar 

  • Magner WJ, Kazim AL, Stewart C, Romano MA, Catalano G, Grande C et al. (2000). Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol 165: 7017–7024.

    CAS  PubMed  Google Scholar 

  • Mann BS, Johnson JR, He K, Sridhara R, Abraham S, Booth BP et al. (2007). Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin Cancer Res 13: 2318–2322.

    CAS  PubMed  Google Scholar 

  • Marks PA, Breslow R . (2007). Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotech 25: 84–90.

    CAS  Google Scholar 

  • Marks PA, Richon VM, Rifkind RA . (2000). Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92: 1210–1216.

    CAS  PubMed  Google Scholar 

  • Marquard L, Poulsen CB, Gjerdrum LM, deNully Brown P, Christensen IJ, Jensen PB et al. (2009). Histone deacetylase 1, 2, 6 and acetylated histone H4 in B- and T-cell lymphomas. Histopathology 54: 688–698.

    PubMed  Google Scholar 

  • Massari ME, Murre C . (2000). Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20: 429–440.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minetti GC, Colussi C, Adami R, Serra C, Mozzetta C, Parente V et al. (2006). Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nat Med 12: 1147–1150.

    CAS  PubMed  Google Scholar 

  • Minucci S, Pelicci PG . (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6: 38–51.

    CAS  PubMed  Google Scholar 

  • Mishra N, Brown DR, Olorenshaw IM, Kammer GM . (2001). Trichostatin A reverses skewed expression of CD154, interleukin-10, and interferon-gamma gene and protein expression in lupus T cells. Proc Natl Acad Sci USA 98: 2628–2633.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A . (2001). Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19: 683–765.

    CAS  PubMed  Google Scholar 

  • Morinobu A, Kanno Y, O'Shea JJ . (2004). Discrete roles for histone acetylation in human T helper 1 cell-specific gene expression. J Biol Chem 279: 40640–40646.

    CAS  PubMed  Google Scholar 

  • Natoli G . (2009). When sirtuins and NF-kappB collide. Cell 136: 19–21.

    CAS  PubMed  Google Scholar 

  • Nishioka C, Ikezoe T, Yang J, Koeffler HP, Yokoyama A . (2008). Blockade of mTOR signaling potentiates the ability of histone deacetylase inhibitor to induce growth arrest and differentiation of acute myelogenous leukemia cells. Leukemia 22: 2159–2168.

    CAS  PubMed  Google Scholar 

  • Nusinzon I, Horvath CM . (2006). Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation. Mol Cell Biol 26: 3106–3113.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oehme I, Deubzer HE, Wegener D, Pickert D, Linke J-P, Hero B et al. (2009). Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res 15: 91–99.

    CAS  PubMed  Google Scholar 

  • Onozaki K, Matsushima K, Aggarwal BB, Oppenheim JJ . (1985). Human interleukin 1 is a cytocidal factor for several tumor cell lines. J Immunol 135: 3962–3968.

    CAS  PubMed  Google Scholar 

  • Osoata GO, Yamamura S, Ito M, Vuppusetty C, Adcock IM, Barnes PJ et al. (2009). Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem Biophys Res Commun 384: 366–371.

    CAS  PubMed  Google Scholar 

  • Ouaïssi M, Sielezneff I, Silvestre R, Sastre B, Bernard JP, Lafontaine J et al. (2008). High histone deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas. Ann Surg Oncol 15: 2318–2328.

    PubMed  Google Scholar 

  • Ozawa Y, Towatari M, Tsuzuki S, Hayakawa F, Maeda T, Miyata Y et al. (2001). Histone deacetylase 3 associates with and represses the transcription factor GATA-2. Blood 98: 2116–2123.

    CAS  PubMed  Google Scholar 

  • Pankaj B, Tehireem A, Ian MA . (2008). The role of histone deacetylases in asthma and allergic diseases. J Allergy Clin Immunol 121: 580–584.

    Google Scholar 

  • Parra M, Mahmoudi T, Verdin E . (2007). Myosin phosphatase dephosphorylates HDAC7, controls its nucleocytoplasmic shuttling, and inhibits apoptosis in thymocytes. Genes Dev 21: 638–643.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasqualucci L, Bereschenko O, Niu H, Klein U, Basso K, Guglielmino R et al. (2003). Molecular pathogenesis of non-Hodgkin's lymphoma: the role of Bcl-6. Leuk Lymphoma 44: S5–S12.

    CAS  PubMed  Google Scholar 

  • Paulson M, Pisharody S, Pan L, Guadagno S, Mui AL, Levy DE . (1999). Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J Biol Chem 274: 25343–25349.

    CAS  PubMed  Google Scholar 

  • Petersson M, Charo J, Salazar-Onfray F, Noffz G, Mohaupt M, Qin Z et al. (1998). Constitutive IL-10 production accounts for the high NK sensitivity, low MHC class I expression, and poor transporter associated with antigen processing (TAP)-1/2 function in the prototype NK target YAC-1. J Immunol 161: 2099–2105.

    CAS  PubMed  Google Scholar 

  • Poulsen CB, Borup R, Cilius F, Niels N, Mads B, Kirsten H et al. (2005). Microarray-based classification of diffuse large B-cell lymphoma. Eur J Haematol 74: 453–465.

    CAS  PubMed  Google Scholar 

  • Rasheed W, Bishton M, Johnstone RW, Prince HM . (2008). Histone deacetylase inhibitors in lymphoma and solid malignancies. Expert Rev Anticanc 8: 413–432.

    CAS  Google Scholar 

  • Reddy P, Maeda Y, Hotary K, Liu C, Reznikov LL, Dinarello CA et al. (2004). Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leuk. P Natl Acad Sci USA 101: 3921–3926.

    CAS  Google Scholar 

  • Redner RL . (2002). Variations on a theme: the alternate translocations in APL. Leukemia 16: 1927–1932.

    CAS  PubMed  Google Scholar 

  • Rigas B . (2007). The use of nitric oxide-donating nonsteroidal anti-inflammatory drugs in the chemoprevention of colorectal neoplasia. Curr Opin Gastroenterol 23: 55–59.

    CAS  PubMed  Google Scholar 

  • Rosato RR, Almenara JA, Grant S . (2003). The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res 63: 3637–3645.

    CAS  PubMed  Google Scholar 

  • Rubenstein RC, Zeitlin PL . (1998). A pilot clinical trial of oral sodium 4-phenylbutyrate (buphenyl) in delta F508-homozygous cystic fibrosis patients partial restoration of nasal epithelial CFTR function. Am J Respir Crit Care Med 157: 484–490.

    CAS  PubMed  Google Scholar 

  • Salminen A, Kauppinen A, Suuronen T, Kaarniranta K . (2008). SIRT1 longevity factor suppresses NF-kappaB -driven immune responses: regulation of aging via NF-kappaB acetylation? Bioessays 30: 939–942.

    CAS  PubMed  Google Scholar 

  • Sandra C, Antonio HI, Daehee H, Brice D, Hoon R, Karen S et al. (2005). Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 164: 10–21.

    Google Scholar 

  • Schmeck B, Lorenz J, N'Guessan PD, Opitz B, van Laak V, Zahlten J et al. (2008). Histone acetylation and flagellin are essential for Legionella pneumophila-induced cytokine expression. J Immunol 181: 940–947.

    CAS  PubMed  Google Scholar 

  • Scott FL, Fuchs GJ, Boyd SE, Denault J-B, Hawkins CJ, Dequiedt F et al. (2008). Caspase-8 cleaves histone deacetylase 7 and abolishes its transcription repressor function. J Biol Chem 283: 19499–19510.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seliger B . (2008). Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immun 57: 1719–1726.

    CAS  Google Scholar 

  • Seliger B, Ritz U, Soldano F . (2006). Molecular mechanisms of HLA class I antigen abnormalities following viral infection and transformation. Int J Cancer 118: 129–138.

    CAS  PubMed  Google Scholar 

  • Serrador J, Cabrero J, Sancho D, Mittelbrunn M, Urzainqui A, Sánchez-Madrid F . (2004). HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity 20: 417–428.

    CAS  PubMed  Google Scholar 

  • Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F et al. (2001). Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2prime-deoxycytidine treatment. Int J Cancer 94: 243–251.

    CAS  PubMed  Google Scholar 

  • Sevignani C, Calin G, Siracusa L, Croce C . (2006). Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17: 189–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Y, Gao Z, Marks PA, Jiang X . (2004). Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 101: 18030–18035.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skov S, Pedersen MT, Andersen L, Thor Straten P, Woetmann A, Odum N . (2005). Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res 65: 11136–11145.

    CAS  PubMed  Google Scholar 

  • So CW, Cleary ML . (2004). Dimerization: a versatile switch for oncogenesis. Blood 104: 919–922.

    CAS  PubMed  Google Scholar 

  • Somoza J, Skene R, Katz B, Mol C, Ho J, Jennings J et al. (2004). Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12: 1325–1334.

    CAS  PubMed  Google Scholar 

  • Strieter RM . (2002). Interleukin-8: a very important chemokine of the human airway epithelium. Am J Physiol Lung Cell Mol Physiol 283: L688–L689.

    CAS  PubMed  Google Scholar 

  • Tao R, Hancock WW . (2007). Regulating regulatory T cells to achieve transplant tolerance. Hepatobiliary Pancreat Dis Int 6: 348–357.

    CAS  PubMed  Google Scholar 

  • Togi S, Kamitani S, Kawakami S, Ikeda O, Muromoto R, Nanbo A et al. (2009). HDAC3 influences phosphorylation of STAT3 at serine 727 by interacting with PP2A. Biochem Bioph Res Co 379: 616–620.

    CAS  Google Scholar 

  • Tomari Y, Zamore PD . (2005). Perspective: machines for RNAi. Genes Dev 19: 517–529.

    CAS  PubMed  Google Scholar 

  • Tourneau CL, Siu LL . (2008). Promising antitumor activity with MGCD0103, a novel isotype-selective histone deacetylase inhibitor. Expert Opin Investig Drugs 17: 1247–1254.

    PubMed  Google Scholar 

  • Trinchieri G . (2003). Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3: 133–146.

    CAS  PubMed  Google Scholar 

  • Ungerstedt JS, Sowa Y, Xu WS, Shao Y, Dokmanovic M, Perez G et al. (2005). Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci USA 102: 673–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valapour M, Guao J, Schroder JT, Keen J, Cianferoni A, Casolaro V et al. (2002). Histone deacetylation inhibits IL4 gene expression in T cells. J Allergy Clin Immun 109: 238–245.

    CAS  PubMed  Google Scholar 

  • Valenzuela-Fernández A, Cabrero JR, Serrador JM, Sánchez-Madrid F . (2008). HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol 18: 291–297.

    PubMed  Google Scholar 

  • van den Elsen PJ, Holling TM, van der Stoep N, Boss JM . (2003). DNA methylation and expression of major histocompatibility complex class I and class II transactivator genes in human developmental tumor cells and in T cell malignancies. Clin Immunol 109: 46–52.

    CAS  PubMed  Google Scholar 

  • Villagra A, Cheng F, Wang H-W, Suarez I, Glozak M, Maurin M et al. (2009). The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10: 92–100.

    CAS  PubMed  Google Scholar 

  • Wang J, Lee S, Teh CE-Y, Bunting K, Ma L, Shannon MF . (2009a). The transcription repressor, ZEB1, cooperates with CtBP2 and HDAC1 to suppress IL-2 gene activation in T cells. Int Immunol 21: 227–235.

    CAS  PubMed  Google Scholar 

  • Wang W, Gao J, Man X-H, Li Z-S, Gong Y-F . (2009b). Significance of DNA methyltransferase-1 and histone deacetylase-1 in pancreatic cancer. Jpn J Cancer Res 21: 1439–1447.

    CAS  Google Scholar 

  • Watamoto K, Towatari M, Ozawa Y, Miyata Y, Okamoto M, Abe A et al. (2003). Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene 22: 9176–9184.

    CAS  PubMed  Google Scholar 

  • Weichert W, Denkert C, Noske A, Darb-Esfahani S, Dietel M, Kalloger SE et al. (2008a). Expression of class I histone deacetylases indicates poor prognosis in endometrioid subtypes of ovarian and endometrial carcinomas. Neoplasia 10: 1021–1027.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weichert W, Roske A, Gekeler V, Beckers T, Stephan C, Jung K et al. (2008b). Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer 98: 604–610.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson AJ, Byun D-S, Popova N, Murray LB, L'Italien K, Sowa Y et al. (2006). Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281: 13548–13558.

    CAS  PubMed  Google Scholar 

  • Woronicz JD, Calnan B, Ngo V, Winoto A . (1994). Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature 367: 277–281.

    CAS  PubMed  Google Scholar 

  • Xu M, Nie L, Kim S-H, Sun X-H . (2003). STAT5-induced Id-1 transcription involves recruitment of HDAC1 and deacetylation of C/EBPb. EMBO J 22: 893–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X-J, Seto E . (2003). Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr Opin Genet Dev 13: 143–153.

    CAS  PubMed  Google Scholar 

  • Yang X-J, Seto E . (2008). The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9: 206–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Li W, Kaplan MH, Chang C-H . (2005). Interleukin (IL)-4 inhibits IL-10 to promote IL-12 production by dendritic cells. J Exp Med 201: 1899–1903.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Kijima M, Akita M, Beppu T . (1990). Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265: 17174–17179.

    CAS  PubMed  Google Scholar 

  • Yuan Zl, Guan YJ, Chatterjee D, Chin YE . (2005). Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307: 269–273.

    CAS  PubMed  Google Scholar 

  • Zeidler R, Eissner G, Meissner P, Uebel S, Tampe R, Lazis S et al. (1997). Downregulation of TAP1 in B lymphocytes by cellular and epstein-barr virus-encoded interleukin-10. Blood 90: 2390–2397.

    CAS  PubMed  Google Scholar 

  • Zhang C, Wang Y, Zhou Z, Zhang J, Tian Z . (2009). Sodium butyrate upregulates expression of NKG2D ligand MICA/B in HeLa and HepG2 cell lines and increases their susceptibility to NK lysis. Cancer Immunol Immun 58: 1275–1285.

    CAS  Google Scholar 

  • Zhang D-H, Yang L, Ray A . (1998). Cutting edge: differential responsiveness of the IL-5 and IL-4 genes to transcription factor GATA-3. J Immunol 161: 3817–3821.

    CAS  PubMed  Google Scholar 

  • Zhang X, Edwards JP, Mosser DM . (2006). Dynamic and transient remodeling of the macrophage IL-10 promoter during transcription. J Immunol 177: 1282–1288.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Tuzova M, Xiao Z-XJ, Cruikshank WW, Center DM . (2008). Pro-IL-16 recruits histone deacetylase 3 to the Skp2 core promoter through interaction with transcription factor GABP. J Immunol 180: 402–408.

    CAS  PubMed  Google Scholar 

  • Zhang Z, Yamashita H, Toyama T, Sugiura H, Ando Y, Mita K et al. (2005). Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast. Breast Cancer Res Tr 94: 11–16.

    CAS  Google Scholar 

  • Zhang Z, Yamashita H, Toyama T, Sugiura H, Omoto Y, Ando Y et al. (2004). HDAC6 expression is correlated with better survival in breast cancer. Clin Cancer Res 10: 6962–6968.

    CAS  PubMed  Google Scholar 

  • Zhong H, May MJ, Jimi E, Ghosh S . (2002). The Phosphorylation status of nuclear NF-κB determines its association with CBP/p300 or HDAC-1. Mol Cell 9: 625–636.

    CAS  PubMed  Google Scholar 

  • Zhou W, Chang S, Aune TM . (2004). Long-range histone acetylation of the Ifng gene is an essential feature of T cell differentiation. Proc Natl Acad Sci USA 101: 2440–2445.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Zhu WG . (2009). The changing face of HDAC inhibitor depsipeptide. Curr Cancer Drug Targets 9: 91–100.

    CAS  PubMed  Google Scholar 

  • Zika E, Greer SF, Zhu X-S, Ting JPY . (2003). Histone deacetylase 1/mSin3A disrupts gamma interferon-induced CIITA function and major histocompatibility complex class II enhanceosome formation. Mol Cell Biol 23: 3091–3102.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work in our laboratories was supported by grants to ES from the National Institutes of Health (NIH), the American Heart Association and the Kaul Foundation, and to EMS from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Villagra, E M Sotomayor or E Seto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villagra, A., Sotomayor, E. & Seto, E. Histone deacetylases and the immunological network: implications in cancer and inflammation. Oncogene 29, 157–173 (2010). https://doi.org/10.1038/onc.2009.334

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.334

Keywords

This article is cited by

Search

Quick links