Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A gene expression signature classifying telomerase and ALT immortalization reveals an hTERT regulatory network and suggests a mesenchymal stem cell origin for ALT

Abstract

Telomere length is maintained by two known mechanisms, the activation of telomerase or alternative lengthening of telomeres (ALT). The molecular mechanisms regulating the ALT phenotype are poorly understood and it is unknown how the decision of which pathway to activate is made at the cellular level. We have shown earlier that active repression of telomerase gene expression by chromatin remodelling of the promoters is one mechanism of regulation; however, other genes and signalling networks are likely to be required to regulate telomerase and maintain the ALT phenotype. Using gene expression profiling, we have uncovered a signature of 1305 genes to distinguish telomerase-positive and ALT cell lines. By combining this with the gene expression profiles of liposarcoma tissue samples, we refined this signature to 297 genes. A network analysis of known interactions between genes within this signature revealed a regulatory signalling network consistent with a model of human telomerase reverse transcriptase (hTERT) repression in ALT cell lines and liposarcomas. This network expands on our existing knowledge of hTERT regulation and provides a platform to understand differential regulation of hTERT in different tumour types and normal tissues. We also show evidence to suggest a novel mesenchymal stem cell origin for ALT immortalization in cell lines and mesenchymal tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Atkinson SP, Hoare SF, Glasspool RM, Keith WN . (2005). Lack of telomerase gene expression in alternative lengthening of telomere cells is associated with chromatin remodeling of the hTR and hTERT gene promoters. Cancer Res 65: 7585–7590.

    Article  CAS  PubMed  Google Scholar 

  • Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A et al. (2007). Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67: 9142–9149.

    Article  CAS  PubMed  Google Scholar 

  • Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR . (1997). Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3: 1271–1274.

    Article  CAS  PubMed  Google Scholar 

  • Cairney CJ, Hoare SF, Daidone MG, Zaffaroni N, Keith WN . (2008). High level of telomerase RNA gene expression is associated with chromatin modification, the ALT phenotype and poor prognosis in liposarcoma. Br J Cancer 98: 1467–1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairney CJ, Keith WN . (2008). Telomerase redefined: integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity. Biochimie 90: 13–23.

    Article  CAS  PubMed  Google Scholar 

  • Chen YJ, Hakin-Smith V, Teo M, Xinarianos GE, Jellinek DA, Carroll T et al. (2006). Association of mutant TP53 with alternative lengthening of telomeres and favorable prognosis in glioma. Cancer Res 66: 6473–6476.

    Article  CAS  PubMed  Google Scholar 

  • Costa A, Daidone MG, Daprai L, Villa R, Cantu S, Pilotti S et al. (2006). Telomere maintenance mechanisms in liposarcomas: association with histologic subtypes and disease progression. Cancer Res 66: 8918–8924.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW et al. (2005). Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 7: 967–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakin-Smith V, Jellinek DA, Levy D, Carroll T, Teo M, Timperley WR et al. (2003). Alternative lengthening of telomeres and survival in patients with glioblastoma multiforme. Lancet 361: 836–838.

    Article  CAS  PubMed  Google Scholar 

  • Hao H, Nancai Y, Lei F, Xiong W, Wen S, Guofu H et al. (2008). siRNA directed against c-Myc inhibits proliferation and downregulates human telomerase reverse transcriptase in human colon cancer Colo 320 cells. J Exp Clin Cancer Res 27: 27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Henson JD, Hannay JA, McCarthy SW, Royds JA, Yeager TR, Robinson RA et al. (2005). A robust assay for alternative lengthening of telomeres in tumors shows the significance of alternative lengthening of telomeres in sarcomas and astrocytomas. Clin Cancer Res 11: 217–225.

    CAS  PubMed  Google Scholar 

  • Henson JD, Neumann AA, Yeager TR, Reddel RR . (2002). Alternative lengthening of telomeres in mammalian cells. Oncogene 21: 598–610.

    Article  CAS  PubMed  Google Scholar 

  • Huang PR, Tsai ST, Hsieh KH, Wang TC . (2008). Heterogeneous nuclear ribonucleoprotein A3 binds single-stranded telomeric DNA and inhibits telomerase extension in vitro. Biochim Biophys Acta 1783: 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Jiang WQ, Zhong ZH, Henson JD, Reddel RR . (2007). Identification of candidate alternative lengthening of telomeres genes by methionine restriction and RNA interference. Oncogene 26: 4635–4647.

    Article  CAS  PubMed  Google Scholar 

  • Johnson JE, Varkonyi RJ, Schwalm J, Cragle R, Klein-Szanto A, Patchefsky A et al. (2005). Multiple mechanisms of telomere maintenance exist in liposarcomas. Clin Cancer Res 11: 5347–5355.

    Article  CAS  PubMed  Google Scholar 

  • Matushansky I, Hernando E, Socci ND, Mills JE, Matos TA, Edgar MA et al. (2007). Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin Invest 117: 3248–3257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehle C, Piatyszek MA, Ljungberg B, Shay JW, Roos G . (1996). Telomerase activity in human renal cell carcinoma. Oncogene 13: 161–166.

    CAS  PubMed  Google Scholar 

  • Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V et al. (2006). Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24: 1095–1103.

    Article  PubMed  Google Scholar 

  • Riggi N, Suva ML, Suva D, Cironi L, Provero P, Tercier S et al. (2008). EWS-FLI-1 expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res 68: 2176–2185.

    Article  CAS  PubMed  Google Scholar 

  • Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC et al. (2005). Spontaneous human adult stem cell transformation. Cancer Res 65: 3035–3039.

    Article  CAS  PubMed  Google Scholar 

  • Serakinci N, Guldberg P, Burns JS, Abdallah B, Schrodder H, Jensen T et al. (2004). Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene 23: 5095–5098.

    Article  CAS  PubMed  Google Scholar 

  • Serakinci N, Hoare SF, Kassem M, Atkinson SP, Keith WN . (2006). Telomerase promoter reprogramming and interaction with general transcription factors in the human mesenchymal stem cell. Regen Med 1: 125–131.

    Article  CAS  PubMed  Google Scholar 

  • Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O . (2007). Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11: 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Ulaner GA, Hoffman AR, Otero J, Huang HY, Zhao Z, Mazumdar M et al. (2004). Divergent patterns of telomere maintenance mechanisms among human sarcomas: sharply contrasting prevalence of the alternative lengthening of telomeres mechanism in Ewing's sarcomas and osteosarcomas. Genes Chromosomes Cancer 41: 155–162.

    Article  CAS  PubMed  Google Scholar 

  • Ulaner GA, Huang HY, Otero J, Zhao Z, Ben-Porat L, Satagopan JM et al. (2003). Absence of a telomere maintenance mechanism as a favorable prognostic factor in patients with osteosarcoma. Cancer Res 63: 1759–1763.

    CAS  PubMed  Google Scholar 

  • Wang Y, Huso DL, Harrington J, Kellner J, Jeong DK, Turney J et al. (2005). Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 7: 509–519.

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Wei Q, Utomo V, Nadesan P, Whetstone H, Kandel R et al. (2007). Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Res 67: 8216–8222.

    Article  CAS  PubMed  Google Scholar 

  • Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR . (1999). Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59: 4175–4179.

    CAS  PubMed  Google Scholar 

  • Zhao YM, Li JY, Lan JP, Lai XY, Luo Y, Sun J et al. (2008). Cell cycle dependent telomere regulation by telomerase in human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 369: 1114–1119.

    Article  CAS  PubMed  Google Scholar 

  • Zhong ZH, Jiang WQ, Cesare AJ, Neumann AA, Wadhwa R, Reddel RR . (2007). Disruption of telomere maintenance by depletion of the MRE11/RAD50/NBS1 complex in cells that use alternative lengthening of telomeres. J Biol Chem 282: 29314–29322.

    Article  CAS  PubMed  Google Scholar 

  • Zhou YF, Bosch-Marce M, Okuyama H, Krishnamachary B, Kimura H, Zhang L et al. (2006). Spontaneous transformation of cultured mouse bone marrow-derived stromal cells. Cancer Res 66: 10849–10854.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann S, Voss M, Kaiser S, Kapp U, Waller CF, Martens UM . (2003). Lack of telomerase activity in human mesenchymal stem cells. Leukemia 17: 1146–1149.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cancer Research UK, European Community Grants LSHC-CT-2004-502943, LSHC-CT-2005-0018806 and Health-F2-2007-200950 Glasgow University and Italian Association for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W N Keith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafferty-Whyte, K., Cairney, C., Will, M. et al. A gene expression signature classifying telomerase and ALT immortalization reveals an hTERT regulatory network and suggests a mesenchymal stem cell origin for ALT. Oncogene 28, 3765–3774 (2009). https://doi.org/10.1038/onc.2009.238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.238

Keywords

This article is cited by

Search

Quick links