Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Class I PI3K in oncogenic cellular transformation

Abstract

Class I phosphoinositide 3-kinase (PI3K) is a dimeric enzyme, consisting of a catalytic and a regulatory subunit. The catalytic subunit occurs in four isoforms designated as p110α, p110β, p110γ and p110δ. These isoforms combine with several regulatory subunits; for p110α, β and δ, the standard regulatory subunit is p85, for p110γ, it is p101. PI3Ks play important roles in human cancer. PIK3CA, the gene encoding p110α, is mutated frequently in common cancers, including carcinoma of the breast, prostate, colon and endometrium. Eighty percent of these mutations are represented by one of the three amino-acid substitutions in the helical or kinase domains of the enzyme. The mutant p110α shows a gain of function in enzymatic and signaling activity and is oncogenic in cell culture and in animal model systems. Structural and genetic data suggest that the mutations affect regulatory inter- and intramolecular interactions and support the conclusion that there are at least two molecular mechanisms for the gain of function in p110α. One of these mechanisms operates largely independently of binding to p85, the other abolishes the requirement for an interaction with Ras. The non-α isoforms of p110 do not show cancer-specific mutations. However, they are often differentially expressed in cancer and, in contrast to p110α, wild-type non-α isoforms of p110 are oncogenic when overexpressed in cell culture. The isoforms of p110 have become promising drug targets. Isoform-selective inhibitors have been identified. Inhibitors that target exclusively the cancer-specific mutants of p110α constitute an important goal and challenge for current drug development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha. Curr Biol 7: 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Ali IU, Schriml LM, Dean M . (1999). Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst 91: 1922–1932.

    CAS  PubMed  Google Scholar 

  • Ali K, Bilancio A, Thomas M, Pearce W, Gilfillan AM, Tkaczyk C et al. (2004). Essential role for the p110delta phosphoinositide 3-kinase in the allergic response. Nature 431: 1007–1011.

    CAS  PubMed  Google Scholar 

  • Ali K, Camps M, Pearce WP, Ji H, Ruckle T, Kuehn N et al. (2008). Isoform-specific functions of phosphoinositide 3-kinases: p110 delta but not p110 gamma promotes optimal allergic responses in vivo. J Immunol 180: 2538–2544.

    CAS  PubMed  Google Scholar 

  • Arden KC . (2004). FoxO: linking new signaling pathways. Mol Cell 14: 416–418.

    CAS  PubMed  Google Scholar 

  • Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S et al. (2004). The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3: 772–775.

    CAS  PubMed  Google Scholar 

  • Bader AG, Kang S, Vogt PK . (2006). Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci USA 103: 1475–1479.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bader AG, Kang S, Zhao L, Vogt PK . (2005). Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 5: 921–929.

    CAS  PubMed  Google Scholar 

  • Bader AG, Vogt PK . (2004). An essential role for protein synthesis in oncogenic cellular transformation. Oncogene 23: 3145–3150.

    CAS  PubMed  Google Scholar 

  • Benistant C, Chapuis H, Roche S . (2000). A specific function for phosphatidylinositol 3-kinase alpha (p85alpha-p110alpha) in cell survival and for phosphatidylinositol 3-kinase beta (p85alpha-p110beta) in de novo DNA synthesis of human colon carcinoma cells. Oncogene 19: 5083–5090.

    CAS  PubMed  Google Scholar 

  • Bi L, Okabe I, Bernard DJ, Nussbaum RL . (2002). Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase. Mamm Genome 13: 169–172.

    CAS  PubMed  Google Scholar 

  • Bi L, Okabe I, Bernard DJ, Wynshaw-Boris A, Nussbaum RL . (1999). Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. J Biol Chem 274: 10963–10968.

    CAS  PubMed  Google Scholar 

  • Biggs III WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC . (1999). Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 96: 7421–7426.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco-Aparicio C, Renner O, Leal JF, Carnero A . (2007). PTEN, more than the AKT pathway. Carcinogenesis 28: 1379–1386.

    CAS  PubMed  Google Scholar 

  • Bony C, Roche S, Shuichi U, Sasaki T, Crackower MA, Penninger J et al. (2001). A specific role of phosphatidylinositol 3-kinase gamma. A regulation of autonomic Ca(2)+ oscillations in cardiac cells. J Cell Biol 152: 717–728.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broderick DK, Di C, Parrett TJ, Samuels YR, Cummins JM, McLendon RE et al. (2004). Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res 64: 5048–5050.

    CAS  PubMed  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96: 857–868.

    CAS  PubMed  Google Scholar 

  • Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS et al. (2004). Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64: 7678–7681.

    CAS  PubMed  Google Scholar 

  • Cantley LC . (2002). The phosphoinositide 3-kinase pathway. Science 296: 1655–1657.

    CAS  PubMed  Google Scholar 

  • Carson JD, Van Aller G, Lehr R, Sinnamon RH, Kirpatrick RB, Auger KR et al. (2008). Effects of oncogenic p110alpha subunit mutations on the lipid kinase activity of phosphatidylinositol 3-kinase. Biochem J 409: 519–524.

    CAS  PubMed  Google Scholar 

  • Chan TO, Rodeck U, Chan AM, Kimmelman AC, Rittenhouse SE, Panayotou G et al. (2002). Small GTPases and tyrosine kinases coregulate a molecular switch in the phosphoinositide 3-kinase regulatory subunit. Cancer Cell 1: 181–191.

    CAS  PubMed  Google Scholar 

  • Clayton E, Bardi G, Bell SE, Chantry D, Downes CP, Gray A et al. (2002). A crucial role for the p110delta subunit of phosphatidylinositol 3-kinase in B cell development and activation. J Exp Med 196: 753–763.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corvera S, Czech MP . (1998). Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol 8: 442–446.

    CAS  PubMed  Google Scholar 

  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789.

    CAS  PubMed  Google Scholar 

  • Cully M, You H, Levine AJ, Mak TW . (2006). Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6: 184–192.

    CAS  PubMed  Google Scholar 

  • de Groot RP, Auwerx J, Bourouis M, Sassone-Corsi P . (1993). Negative regulation of Jun/AP-1: conserved function of glycogen synthase kinase 3 and the Drosophila kinase shaggy. Oncogene 8: 841–847.

    CAS  PubMed  Google Scholar 

  • Deane JA, Fruman DA . (2004). Phosphoinositide 3-kinase: diverse roles in immune cell activation. Annu Rev Immunol 22: 563–598.

    CAS  PubMed  Google Scholar 

  • Denley A, Kang S, Karst U, Vogt PK . (2008). Oncogenic signaling of class I PI3K isoforms. Oncogene 27: 2561–2574.

    CAS  PubMed  Google Scholar 

  • Dhand R, Hiles I, Panayotou G, Roche S, Fry MJ, Gout I et al. (1994). PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. Embo J 13: 522–533.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eng C . (2003). PTEN: one gene, many syndromes. Hum Mutat 22: 183–198.

    CAS  PubMed  Google Scholar 

  • Engelman JA, Luo J, Cantley LC . (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7: 606–619.

    CAS  PubMed  Google Scholar 

  • Foukas LC, Beeton CA, Jensen J, Phillips WA, Shepherd PR . (2004). Regulation of phosphoinositide 3-kinase by its intrinsic serine kinase activity in vivo. Mol Cell Biol 24: 966–975.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, Peskett E et al. (2006). Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441: 366–370.

    CAS  PubMed  Google Scholar 

  • Foukas LC, Shepherd PR . (2004). Phosphoinositide 3-kinase: the protein kinase that time forgot. Biochem Soc Trans 32: 330–331.

    CAS  PubMed  Google Scholar 

  • Fruman DA . (2004). Towards an understanding of isoform specificity in phosphoinositide 3-kinase signalling in lymphocytes. Biochem Soc Trans 32: 315–319.

    CAS  PubMed  Google Scholar 

  • Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H et al. (2003). Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11: 1457–1466.

    CAS  PubMed  Google Scholar 

  • Gilley J, Coffer PJ, Ham J . (2003). FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol 162: 613–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ, Salpekar A et al. (2008). Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 453: 662–666.

    CAS  PubMed  Google Scholar 

  • Gregory MA, Qi Y, Hann SR . (2003). Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem 278: 51606–51612.

    CAS  PubMed  Google Scholar 

  • Gymnopoulos M, Elsliger MA, Vogt PK . (2007). Rare cancer-specific mutations in PIK3CA show gain of function. Proc Natl Acad Sci USA 104: 5569–5574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al. (2004). The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166: 213–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann C, Bartels G, Gehlhaar C, Holtkamp N, von Deimling A . (2005). PIK3CA mutations in glioblastoma multiforme. Acta Neuropathol (Berl) 109: 639–642.

    CAS  Google Scholar 

  • Hawkins PT, Anderson KE, Davidson K, Stephens LR . (2006). Signalling through Class I PI3Ks in mammalian cells. Biochem Soc Trans 34: 647–662.

    CAS  PubMed  Google Scholar 

  • Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ et al. (2006). PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314: 1458–1461.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey FB, Cotter TG . (2006). BCR-ABL regulates phosphatidylinositol 3-kinase-p110gamma transcription and activation and is required for proliferation and drug resistance. J Biol Chem 281: 2441–2450.

    CAS  PubMed  Google Scholar 

  • Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L et al. (2000). Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287: 1049–1053.

    CAS  PubMed  Google Scholar 

  • Hooshmand-Rad R, Hajkova L, Klint P, Karlsson R, Vanhaesebroeck B, Claesson-Welsh L et al. (2000). The PI 3-kinase isoforms p110(alpha) and p110(beta) have differential roles in PDGF- and insulin-mediated signaling. J Cell Sci. 113: 207–214.

    CAS  PubMed  Google Scholar 

  • Huang CH, Mandelker D, Gabelli SB, Amzel LM . (2008). Insights into the oncogenic effects of /PIK3CA/mutations from the structure of p110alpha/p85alpha. Cell Cycle 7: 1151–1156.

    CAS  PubMed  Google Scholar 

  • Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, Kinzler KW et al. (2007). The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science 318: 1744–1748.

    CAS  PubMed  Google Scholar 

  • Ikenoue T, Kanai F, Hikiba Y, Obata T, Tanaka Y, Imamura J et al. (2005). Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res 65: 4562–4567.

    CAS  PubMed  Google Scholar 

  • Inoki K, Li Y, Xu T, Guan KL . (2003). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17: 1829–1834.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoki K, Li Y, Zhu T, Wu J, Guan KL . (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648–657.

    CAS  PubMed  Google Scholar 

  • Isakoff SJ, Engelman JA, Irie HY, Luo J, Brachmann SM, Pearline RV et al. (2005). Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res 65: 10992–11000.

    CAS  PubMed  Google Scholar 

  • Ji H, Rintelen F, Waltzinger C, Bertschy Meier D, Bilancio A, Pearce W et al. (2007). Inactivation of PI3Kgamma and PI3Kdelta distorts T-cell development and causes multiple organ inflammation. Blood 110: 2940–2947.

    CAS  PubMed  Google Scholar 

  • Jou ST, Carpino N, Takahashi Y, Piekorz R, Chao JR, Wang D et al. (2002). Essential, nonredundant role for the phosphoinositide 3-kinase p110delta in signaling by the B-cell receptor complex. Mol Cell Biol 22: 8580–8591.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S, Bader AG, Vogt PK . (2005a). Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA 102: 802–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S, Bader AG, Zhao L, Vogt PK . (2005b). Mutated PI 3-kinases: cancer targets on a silver platter. Cell Cycle 4: 578–581.

    CAS  PubMed  Google Scholar 

  • Kang S, Denley A, Vanhaesebroeck B, Vogt PK . (2006). Oncogenic transformation induced by the p110beta, -gamma, and -delta isoforms of class I phosphoinositide 3-kinase. Proc Natl Acad Sci USA 103: 1289–1294.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD . (2001). Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Ann Rev Cell Dev Biol 17: 615–675.

    CAS  Google Scholar 

  • Klippel A, Escobedo JA, Hirano M, Williams LT . (1994). The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol Cell Biol 14: 2675–2685.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O et al. (2006). A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125: 733–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knight ZA, Shokat KM . (2007). Chemically targeting the PI3K family. Biochem Soc Trans 35: 245–249.

    CAS  PubMed  Google Scholar 

  • Knobbe CB, Trampe-Kieslich A, Reifenberger G . (2005). Genetic alteration and expression of the phosphoinositol-3-kinase/Akt pathway genes PIK3CA and PIKE in human glioblastomas. Neuropathol Appl Neurobiol 31: 486–490.

    CAS  PubMed  Google Scholar 

  • Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM . (1999). Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398: 630–634.

    CAS  PubMed  Google Scholar 

  • Laffargue M, Calvez R, Finan P, Trifilieff A, Barbier M, Altruda F et al. (2002). Phosphoinositide 3-kinase gamma is an essential amplifier of mast cell function. Immunity 16: 441–451.

    CAS  PubMed  Google Scholar 

  • Lee JW, Soung YH, Kim SY, Lee HW, Park WS, Nam SW et al. (2005). PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 24: 1477–1480.

    CAS  PubMed  Google Scholar 

  • Leslie NR, Downes CP . (2004). PTEN function: how normal cells control it and tumour cells lose it. Biochem J 382: 1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leverrier Y, Okkenhaug K, Sawyer C, Bilancio A, Vanhaesebroeck B, Ridley AJ . (2003). Class I phosphoinositide 3-kinase p110beta is required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by macrophages. J Biol Chem. 278: 38437–38442.

    CAS  PubMed  Google Scholar 

  • Levine DA, Bogomolniy F, Yee CJ, Lash A, Barakat RR, Borgen PI et al. (2005). Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res 11: 2875–2878.

    CAS  PubMed  Google Scholar 

  • Li VS, Wong CW, Chan TL, Chan AS, Zhao W, Chu KM et al. (2005). Mutations of PIK3CA in gastric adenocarcinoma. BMC Cancer 5: 29.

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Jiang H, Xie W, Zhang Z, Smrcka AV, Wu D . (2000). Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 287: 1046–1049.

    CAS  PubMed  Google Scholar 

  • Liu Z, Roberts TM . (2006). Human tumor mutants in the p110alpha subunit of PI3K. Cell Cycle 5: 675–677.

    CAS  PubMed  Google Scholar 

  • Luo J, Field SJ, Lee JY, Engelman JA, Cantley LC . (2005). The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. J Cell Biol 170: 455–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maehama T, Dixon JE . (1998). The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273: 13375–13378.

    CAS  PubMed  Google Scholar 

  • Maehama T, Taylor GS, Dixon JE . (2001). PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem 70: 247–279.

    CAS  PubMed  Google Scholar 

  • Medema RH, Kops GJ, Bos JL, Burgering BM . (2000). AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404: 782–787.

    CAS  PubMed  Google Scholar 

  • Miled N, Yan Y, Hon WC, Perisic O, Zvelebil M, Inbar Y et al. (2007). Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317: 239–242.

    CAS  PubMed  Google Scholar 

  • Mizoguchi M, Nutt CL, Mohapatra G, Louis DN . (2004). Genetic alterations of phosphoinositide 3-kinase subunit genes in human glioblastomas. Brain Pathol 14: 372–377.

    CAS  PubMed  Google Scholar 

  • Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA et al. (1998). The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA 95: 13513–13518.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nalefski EA, Falke JJ . (1996). The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5: 2375–2390.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newton AC, Johnson JE . (1998). Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. Biochim Biophys Acta 1376: 155–172.

    CAS  PubMed  Google Scholar 

  • Nikolakaki E, Coffer PJ, Hemelsoet R, Woodgett JR, Defize LH . (1993). Glycogen synthase kinase 3 phosphorylates Jun family members in vitro and negatively regulates their transactivating potential in intact cells. Oncogene 8: 833–840.

    CAS  PubMed  Google Scholar 

  • Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, Peskett E et al. (2002). Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 297: 1031–1034.

    CAS  PubMed  Google Scholar 

  • Okkenhaug K, Vanhaesebroeck B . (2003). PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 3: 317–330.

    CAS  PubMed  Google Scholar 

  • Ono A, Lim J, Hamilton JR, Jackson SP, Schoenwaelder SM . (2007). SELECTIVE SIGNALLING ROLE FOR PI 3-KINASE P110BETA IN THROMBIN-INDUCED CLOT RETRACTION. J Thromb and Haemost 5: W-238.

    Google Scholar 

  • Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH et al. (2000). Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103: 931–943.

    CAS  PubMed  Google Scholar 

  • Raynaud FI, Eccles S, Clarke PA, Hayes A, Nutley B, Alix S et al. (2007). Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res 67: 5840–5850.

    CAS  PubMed  Google Scholar 

  • Rizo J, Sudhof TC . (1998). C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 273: 15879–15882.

    CAS  PubMed  Google Scholar 

  • Rodriguez-Borlado L, Barber DF, Hernandez C, Rodriguez-Marcos MA, Sanchez A, Hirsch E et al. (2003). Phosphatidylinositol 3-kinase regulates the CD4/CD8 T cell differentiation ratio. J Immunol 170: 4475–4482.

    CAS  PubMed  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ et al. (1994). Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370: 527–532.

    CAS  PubMed  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J . (1996). Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J 15: 2442–2451.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X et al. (2005). PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65: 2554–2559.

    CAS  PubMed  Google Scholar 

  • Sadhu C, Dick K, Tino WT, Staunton DE . (2003). Selective role of PI3K delta in neutrophil inflammatory responses. Biochem Biophys Res Commun 308: 764–769.

    CAS  PubMed  Google Scholar 

  • Salmena L, Carracedo A, Pandolfi PP . (2008). Tenets of PTEN tumor suppression. Cell 133: 403–414.

    CAS  PubMed  Google Scholar 

  • Samuels Y, Ericson K . (2006). Oncogenic PI3K and its role in cancer. Curr Opin Oncol 18: 77–82.

    CAS  PubMed  Google Scholar 

  • Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science 304: 554.

    CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098–1101.

    CAS  PubMed  Google Scholar 

  • Sasaki T, Irie-Sasaki J, Jones RG, Oliveira-dos-Santos AJ, Stanford WL, Bolon B et al. (2000). Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 287: 1040–1046.

    CAS  PubMed  Google Scholar 

  • Sawyer C, Sturge J, Bennett DC, O'Hare MJ, Allen WE, Bain J et al. (2003). Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110delta. Cancer Res 63: 1667–1675.

    CAS  PubMed  Google Scholar 

  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14: 2501–2514.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seoane J, Le HV, Shen L, Anderson SA, Massague J . (2004). Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117: 211–223.

    CAS  PubMed  Google Scholar 

  • Shekar SC, Wu H, Fu Z, Yip SC, Nagajyothi, Cahill SM et al. (2005). Mechanism of constitutive phosphoinositide 3-kinase activation by oncogenic mutants of the p85 regulatory subunit. J Biol Chem 280: 27850–27855.

    CAS  PubMed  Google Scholar 

  • Simpson L, Parsons R . (2001). PTEN: life as a tumor suppressor. Exp Cell Res 264: 29–41.

    CAS  PubMed  Google Scholar 

  • Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fischer R, Drepps A et al. (1991). Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65: 83–90.

    CAS  PubMed  Google Scholar 

  • Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK et al. (1997). Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 16: 6151–6161.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM et al. (2002). The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol 168: 5024–5031.

    CAS  PubMed  Google Scholar 

  • Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T et al. (1998). Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95: 29–39.

    CAS  PubMed  Google Scholar 

  • Stephens L, Smrcka A, Cooke FT, Jackson TR, Sternweis PC, Hawkins PT . (1994). A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Cell 77: 83–93.

    CAS  PubMed  Google Scholar 

  • Suire S, Condliffe AM, Ferguson GJ, Ellson CD, Guillou H, Davidson K et al. (2006). Gbetagammas and the Ras binding domain of p110gamma are both important regulators of PI(3)K gamma signalling in neutrophils. Nat Cell Biol 8: 1303–1309.

    CAS  PubMed  Google Scholar 

  • Sujobert P, Bardet V, Cornillet-Lefebvre P, Hayflick JS, Prie N, Verdier F et al. (2005). Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 106: 1063–1066.

    CAS  PubMed  Google Scholar 

  • Takaishi H, Konishi H, Matsuzaki H, Ono Y, Shirai Y, Saito N et al. (1999). Regulation of nuclear translocation of forkhead transcription factor AFX by protein kinase B. Proc Natl Acad Sci USA 96: 11836–11841.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang ED, Nunez G, Barr FG, Guan KL . (1999). Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 274: 16741–16746.

    CAS  PubMed  Google Scholar 

  • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J . (2003). Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13: 1259–1268.

    CAS  PubMed  Google Scholar 

  • van der Meijden PE, Schoenwaelder SM, Feijge MA, Cosemans JM, Munnix IC, Wetzker R et al. (2008). Dual P2Y 12 receptor signaling in thrombin-stimulated platelets--involvement of phosphoinositide 3-kinase beta but not gamma isoform in Ca2+ mobilization and procoagulant activity. FEBS J 275: 371–385.

    CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Ali K, Bilancio A, Geering B, Foukas LC . (2005). Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci 30: 194–204.

    CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Jones GE, Allen WE, Zicha D, Hooshmand-Rad R, Sawyer C et al. (1999). Distinct PI(3)Ks mediate mitogenic signalling and cell migration in macrophages. Nat Cell Biol 1: 69–71.

    CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC et al. (2001). Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70: 535–602.

    CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD . (1997a). Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 22: 267–272.

    CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Waterfield MD . (1999). Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res 253: 239–254.

    CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ et al. (1997b). P110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci USA 94: 4330–4335.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vivanco I, Sawyers CL . (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2: 489–501.

    CAS  PubMed  Google Scholar 

  • Vogt PK, Kang S, Elsliger MA, Gymnopoulos M . (2007). Cancer-specific mutations in phosphatidylinositol 3-kinase. Trends Biochem Sci 32: 342–349.

    CAS  PubMed  Google Scholar 

  • Walker EH, Perisic O, Ried C, Stephens L, Williams RL . (1999). Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402: 313–320.

    CAS  PubMed  Google Scholar 

  • Wang Y, Helland A, Holm R, Kristensen GB, Borresen-Dale AL . (2005). PIK3CA mutations in advanced ovarian carcinomas. Hum Mutat 25: 322.

    CAS  PubMed  Google Scholar 

  • Wei W, Jin J, Schlisio S, Harper JW, Kaelin Jr WG . (2005). The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8: 25–33.

    CAS  PubMed  Google Scholar 

  • Wishart MJ, Dixon JE . (2002). PTEN and myotubularin phosphatases: from 3-phosphoinositide dephosphorylation to disease. Trends Cell Biol 12: 579–585.

    CAS  PubMed  Google Scholar 

  • Wu H, Yan Y, Backer JM . (2007). Regulation of class IA PI3Ks. Biochem Soc Trans 35: 242–244.

    CAS  PubMed  Google Scholar 

  • Yaguchi S, Fukui Y, Koshimizu I, Yoshimi H, Matsuno T, Gouda H et al. (2006). Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J Natl Cancer Inst 98: 545–556.

    CAS  PubMed  Google Scholar 

  • Yip SC, El-Sibai M, Hill KM, Wu H, Fu Z, Condeelis JS et al. (2004). Over-expression of the p110beta but not p110alpha isoform of PI 3-kinase inhibits motility in breast cancer cells. Cell Motil Cytoskeleton. 59: 180–188.

    CAS  PubMed  Google Scholar 

  • Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM . (1998). Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 18: 1379–1387.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D . (2003). Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5: 578–581.

    CAS  PubMed  Google Scholar 

  • Zhao JJ, Liu Z, Wang L, Shin E, Loda MF, Roberts TM . (2005). The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci USA 102: 18443–18448.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Vogt PK . (2008). Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci USA 105: 2652–2657.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Cancer Institute and by The Stein Foundation. Dr Li Zhao is the recipient of a postdoctoral fellowship from the National Cancer Institute (F32CA130304). This is manuscript no. 19561-MEM from The Scripps Research Institute. We thank Dr Jonathan Hart and Dr Marco Gymnopoulos for thoughtful discussions and critical information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Vogt, P. Class I PI3K in oncogenic cellular transformation. Oncogene 27, 5486–5496 (2008). https://doi.org/10.1038/onc.2008.244

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.244

Keywords

This article is cited by

Search

Quick links